Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual-Context Aggregation for Universal Image Matting (2402.18109v1)

Published 28 Feb 2024 in cs.CV

Abstract: Natural image matting aims to estimate the alpha matte of the foreground from a given image. Various approaches have been explored to address this problem, such as interactive matting methods that use guidance such as click or trimap, and automatic matting methods tailored to specific objects. However, existing matting methods are designed for specific objects or guidance, neglecting the common requirement of aggregating global and local contexts in image matting. As a result, these methods often encounter challenges in accurately identifying the foreground and generating precise boundaries, which limits their effectiveness in unforeseen scenarios. In this paper, we propose a simple and universal matting framework, named Dual-Context Aggregation Matting (DCAM), which enables robust image matting with arbitrary guidance or without guidance. Specifically, DCAM first adopts a semantic backbone network to extract low-level features and context features from the input image and guidance. Then, we introduce a dual-context aggregation network that incorporates global object aggregators and local appearance aggregators to iteratively refine the extracted context features. By performing both global contour segmentation and local boundary refinement, DCAM exhibits robustness to diverse types of guidance and objects. Finally, we adopt a matting decoder network to fuse the low-level features and the refined context features for alpha matte estimation. Experimental results on five matting datasets demonstrate that the proposed DCAM outperforms state-of-the-art matting methods in both automatic matting and interactive matting tasks, which highlights the strong universality and high performance of DCAM. The source code is available at \url{https://github.com/Windaway/DCAM}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. Chen, Y., Guan, J., Cham, W.K.: Robust Multi-Focus Image Fusion Using Edge Model and Multi-Matting. TIP 27, 1526–1541 (2018) Gastal and Oliveira [2010] Gastal, E.S.L., Oliveira, M.M.: Shared Sampling for Real‐Time Alpha Matting. Computer Graphics Forum 29(2), 575–584 (2010) Gong et al. [2015] Gong, M., Qian, Y., Cheng, L.: Integrated Foreground Segmentation and Boundary Matting for Live Videos. TIP 24(4), 1356–1370 (2015) Lin et al. [2021] Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Gastal, E.S.L., Oliveira, M.M.: Shared Sampling for Real‐Time Alpha Matting. Computer Graphics Forum 29(2), 575–584 (2010) Gong et al. [2015] Gong, M., Qian, Y., Cheng, L.: Integrated Foreground Segmentation and Boundary Matting for Live Videos. TIP 24(4), 1356–1370 (2015) Lin et al. [2021] Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Gong, M., Qian, Y., Cheng, L.: Integrated Foreground Segmentation and Boundary Matting for Live Videos. TIP 24(4), 1356–1370 (2015) Lin et al. [2021] Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  2. Gastal, E.S.L., Oliveira, M.M.: Shared Sampling for Real‐Time Alpha Matting. Computer Graphics Forum 29(2), 575–584 (2010) Gong et al. [2015] Gong, M., Qian, Y., Cheng, L.: Integrated Foreground Segmentation and Boundary Matting for Live Videos. TIP 24(4), 1356–1370 (2015) Lin et al. [2021] Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Gong, M., Qian, Y., Cheng, L.: Integrated Foreground Segmentation and Boundary Matting for Live Videos. TIP 24(4), 1356–1370 (2015) Lin et al. [2021] Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  3. Gong, M., Qian, Y., Cheng, L.: Integrated Foreground Segmentation and Boundary Matting for Live Videos. TIP 24(4), 1356–1370 (2015) Lin et al. [2021] Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  4. Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021) Zongker et al. [1999] Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  5. Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: ACM SIGGRAPH, pp. 205–214 (1999) Li et al. [2022] Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  6. Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging Composite and Real: Towards End-to-end Deep Image Matting. International Journal of Computer Vision (2022) Berman et al. [1998] Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  7. Berman, A., Dadourian, A., Vlahos, P.: Method for removing from an image the background surrounding a selected object (1998) Ruzon and Tomasi [2000] Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  8. Ruzon, M.A., Tomasi, C.: Alpha Estimation in Natural Images. In: CVPR (2000) Wang and Cohen [2007] Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  9. Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR (2007) He et al. [2011] He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  10. He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A Global Sampling Method for Alpha Matting. In: CVPR (2011) Shahrian et al. [2013] Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  11. Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving Image Matting Using Comprehensive Sampling Sets. In: CVPR (2013) Chuang et al. [2001] Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  12. Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian Approach to Digital Matting. In: CVPR (2001) Sun et al. [2004] Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  13. Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. In: SIGGRAPH (2004) Grady and Westermann [2005] Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  14. Grady, L., Westermann, R.: Random Walks for Interactive Alpha-Matting. In: VIIP (2005) Levin et al. [2008] Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  15. Levin, A., Lischinski, D., Weiss, Y.: A Closed-Form Solution to Natural Image Matting. TPAMI 30(2), 228–242 (2008) Levin et al. [2008] Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  16. Levin, A., Rav-Acha, A., Lischinski, D.: Spectral Matting. TPAMI 30(10), 1699–1712 (2008) He et al. [2010] He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  17. He, K., Sun, J., Tang, X.: Fast Matting Using Large Kernel Matting Laplacian Matrices. In: CVPR (2010) Chen et al. [2013] Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  18. Chen, Q., Li, D., Tang, C.-K.: KNN Matting. TPAMI 35(9), 2175–2188 (2013) Li et al. [2013] Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  19. Li, D., Chen, Q., Tang, C.-K.: Motion-Aware KNN Laplacian for Video Matting. In: ICCV (2013) Aksoy et al. [2017] Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  20. Aksoy, Y., Aydin, T.O., Pollefeys, M.: Designing Effective Inter-Pixel Information Flow for Natural Image Matting. In: CVPR (2017) Xu et al. [2017] Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  21. Xu, N., Price, B., Cohen, S., Huang, T.: Deep Image Matting. In: CVPR (2017) Tang et al. [2019] Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  22. Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: CVPR (2019) Cai et al. [2019] Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  23. Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled Image Matting. In: ICCV (2019) Lu et al. [2019] Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  24. Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: Learning to Index for Deep Image Matting. In: ICCV (2019) Li and Lu [2020] Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  25. Li, Y., Lu, H.: Natural Image Matting via Guided Contextual Attention. In: AAAI (2020) Forte and Pitié [2020] Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  26. Forte, M., Pitié, F.: F, B, Alpha Matting. arXiv preprint arXiv:2003.07711 (2020) Hou and Liu [2020] Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  27. Hou, Q., Liu, F.: Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation. In: ICCV (2020) Yu et al. [2021] Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  28. Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-Resolution Deep Image Matting. In: AAAI (2021) Yu et al. [2021] Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  29. Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask Guided Matting via Progressive Refinement Network. In: CVPR (2021) Wang et al. [2021] Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  30. Wang, R., Xie, J., Han, J., Qi, D.: Improving Deep Image Matting Via Local Smoothness Assumption. arXiv preprint arXiv:2112.13809 (2021) Liu et al. [2021] Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  31. Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite Information Mining and Integration for Image Matting. In: ICCV (2021) Sun et al. [2021] Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  32. Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: CVPR (2021) Dai et al. [2022] Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  33. Dai, Y., Price, B., Zhang, H., Shen, C.: Boosting Robustness of Image Matting with Context Assembling and Strong Data Augmentation. In: CVPR (2022) Park et al. [2022] Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  34. Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: Transformer-Based Image Matting via Prior-Tokens. In: CVPR (2022) Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  35. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV (2021) Chen et al. [2018] Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  36. Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: ACM MM (2018) Zhang et al. [2019] Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  37. Zhang, Y., Gong, L., Fan, L., Ren, P., Xu, W.: A late fusion cnn for digital matting. In: CVPR (2019) Qiao et al. [2020] Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  38. Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: CVPR (2020) Ke et al. [2022] Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  39. Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.H.: Modnet: Real-time trimap-free portrait matting via objective decomposition. In: AAAI (2022) Yu et al. [2021] Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  40. Yu, Z., Li, X., Huang, H., Zheng, W., Chen, L.: Cascade Image Matting With Deformable Graph Refinement. In: ICCV (2021) Li et al. [2021] Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  41. Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: ACM MM. MM ’21, pp. 3501–3509 (2021) Liu et al. [2020] Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  42. Liu, J., Yao, Y., Hou, W., Cui, M., Xie, X., Zhang, C., Hua, X.-s.: Boosting semantic human matting with coarse annotations. In: CVPR (2020) Srivastava et al. [2022] Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  43. Srivastava, A., Raghu, S., Thyagarajan, A.K., Vaidyaraman, J., Kothandaraman, M., Sudheendra, P., Goel, A.: Alpha matting for portraits using encoder-decoder models. Multimedia Tools and Applications 81(10), 14517–14528 (2022) He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  44. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: CVPR (2016) Fu et al. [2020] Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  45. Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: Scene segmentation with dual relation-aware attention network. TPAMI (2020) Yuan et al. [2020] Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  46. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: ECCV (2020) Wang et al. [2019] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  47. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. TPAMI (2019) Sun et al. [2019] Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  48. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019) Bo et al. [2023] Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  49. Bo, D., Pichao, W., Wang, F.: Afformer: Head-free lightweight semantic segmentation with linear transformer. In: AAAI (2023) Liu et al. [2023] Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  50. Liu, Q., Zhang, S., Meng, Q., Zhong, B., Liu, P., Yao, H.: End-to-end human instance matting. IEEE TCSVT (2023) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  51. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: NeurIPS (2019) He et al. [2015] He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  52. He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: ICCV (2015) Deng et al. [2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  53. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009) Kingma and Ba [2014] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  54. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Qin et al. [2020] Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  55. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: Going deeper with nested u-structure for salient object detection. Pattern Recognition 106, 107404 (2020) Dai et al. [2021] Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  56. Dai, Y., Lu, H., Shen, C.: Learning Affinity-Aware Upsampling for Deep Image Matting. In: Cvpr (2021) Wang et al. [2022] Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  57. Wang, R., Xie, J., Han, J., Qi, D.: Improving deep image matting via local smoothness assumption. In: ICME (2022) Cai et al. [2022] Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  58. Cai, H., Xue, F., Xu, L., Guo, L.: TransMatting: Enhancing Transparent Objects Matting with Transformers. In: ECCV (2022) Qiao et al. [2023] Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  59. Qiao, Y., Liu, Y., Wei, Z., Wang, Y., Cai, Q., Zhang, G., Yang, X.: Hierarchical and progressive image matting. ACM TOMM 19(2) (2023) Zhu et al. [2017] Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017) Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
  60. Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: ACM MM (2017)
Citations (1)

Summary

We haven't generated a summary for this paper yet.