Local heat current flow in ballistic phonon transport of graphene nanoribbons (2402.17639v2)
Abstract: Utilizing the non-equilibrium Green's function method, we study the local heat current flow of phonons in nanoscale ballistic graphene nanoribbon, where boundary scattering leads to the formation of atomic-scale current vortices. We further map out the atomic temperature distribution in the ribbon with B\"uttiker's probe approach. From the heat current and temperature distribution, we observe inverted temperature response in the ribbon, where the heat current direction goes from the colder to the hotter region. Moreover, we show that atomic scale defect can generate heat vortex at certain frequency, but it is averaged out when including contributions from all the phonon modes. Meanwhile, our results have recovered residual-resistivity dipole features manifested at the vicinity of local defects. These results extend the study of local heat vortex and negative temperature response in the bulk hydrodynamic regime to the atomic-scale ballistic regime, further confirming boundary scattering is crucial to generate backflow of heat current.
- Y. Dubi and M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Reviews of Modern Physics 83, 131 (2011).
- D. Segal and B. K. Agarwalla, Vibrational heat transport in molecular junctions, Annual Review of Physical Chemistry 67, 185 (2016).
- D. Rai, O. Hod, and A. Nitzan, Circular currents in molecular wires, The Journal of Physical Chemistry C 114, 20583 (2010).
- D. Nozaki and W. G. Schmidt, Current density analysis of electron transport through molecular wires in open quantum systems, Journal of Computational Chemistry 38, 1685 (2017).
- J. B. Rix and P. Hedegård, Thermoelectric driven ring currents in single molecules and graphene nanoribbons, The Journal of Physical Chemistry C 123, 3817 (2019).
- V. Pohl, L. E. Marsoner Steinkasserer, and J. C. Tremblay, Imaging time-dependent electronic currents through a graphene-based nanojunction, The Journal of Physical Chemistry Letters 10, 5387 (2019).
- A. Jensen, M. H. Garner, and G. C. Solomon, When current does not follow bonds: Current density in saturated molecules, The Journal of Physical Chemistry C 123, 12042 (2019).
- B. K. Nikolić, L. P. Zârbo, and S. Souma, Imaging mesoscopic spin hall flow: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures, Physical Review B 73, 075303 (2006).
- L. P. Zârbo and B. K. Nikolić, Spatial distribution of local currents of massless dirac fermions in quantum transport through graphene nanoribbons, Europhysics Letters (EPL) 80, 47001 (2007).
- S.-H. Chen, B. K. Nikolić, and C.-R. Chang, Inverse quantum spin hall effect generated by spin pumping from precessing magnetization into a graphene-based two-dimensional topological insulator, Physical Review B 81, 035428 (2010).
- P.-H. Chang and B. K. Nikolić, Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-$zt$ thermoelectrics, Physical Review B 86, 041406 (2012).
- M. Walz, J. Wilhelm, and F. Evers, Current patterns and orbital magnetism in mesoscopic dc transport, Physical Review Letters 113, 136602 (2014).
- J. Wilhelm, M. Walz, and F. Evers, Ab initio quantum transport through armchair graphene nanoribbons: Streamlines in the current density, Physical Review B 89, 195406 (2014).
- X. Dang, J. D. Burton, and E. Y. Tsymbal, Local currents in a 2d topological insulator, Journal of Physics: Condensed Matter 27, 505301 (2015).
- M. Walz, A. Bagrets, and F. Evers, Local current density calculations for molecular films from ab initio, Journal of Chemical Theory and Computation 11, 5161 (2015).
- T. Stegmann and N. Szpak, Current flow paths in deformed graphene: From quantum transport to classical trajectories in curved space, New Journal of Physics 18, 053016 (2016).
- X. W. Zhang and Y. L. Liu, Electronic transport and spatial current patterns of 2d electronic system: A recursive green’s function method study, AIP Advances 9, 115209 (2019).
- E. Gomes and F. Moraes, Current vortices in hexagonal graphene quantum dots, Physical Review B 104, 165408 (2021).
- J. Shao, B. Paulus, and J. C. Tremblay, Local current analysis on defective zigzag graphene nanoribbons devices for biosensor material applications, Journal of Computational Chemistry 42, 1475 (2021).
- L. Levitov and G. Falkovich, Electron viscosity, current vortices and negative nonlocal resistance in graphene, Nature Physics 12, 672 (2016).
- S. Danz and B. N. Narozhny, Vorticity of viscous electronic flow in graphene, 2D Materials 7, 035001 (2020).
- C. Zhang, S. Chen, and Z. Guo, Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials, International Journal of Heat and Mass Transfer 176, 121282 (2021).
- M. Raya-Moreno, J. Carrete, and X. Cartoixà, Hydrodynamic signatures in thermal transport in devices based on two-dimensional materials: An ab initio study, Physical Review B 106, 014308 (2022).
- J.-S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, The European Physical Journal B 62, 381 (2008).
- M. Morooka, T. Yamamoto, and K. Watanabe, Defect-induced circulating thermal current in graphene with nanosized width, Physical Review B 77, 033412 (2008).
- D. Zhang, X. Zheng, and M. Di Ventra, Local temperatures out of equilibrium, Physics Reports 830, 1 (2019).
- A. Dhar, Heat transport in low-dimensional systems, Advances in Physics 57, 457 (2008).
- V. Kannan, A. Dhar, and J. L. Lebowitz, Nonequilibrium stationary state of a harmonic crystal with alternating masses, Physical Review E 85, 041118 (2012).
- M. Büttiker, Small normal-metal loop coupled to an electron reservoir, Physical Review B 32, 1846 (1985).
- M. Büttiker, Role of quantum coherence in series resistors, Physical Review B 33, 3020 (1986).
- J. T. Lü and J.-S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B 76, 165418 (2007).
- Y. Dubi and M. Di Ventra, Reconstructing fourier’s law from disorder in quantum wires, Physical Review B 79, 115415 (2009a).
- Y. Dubi and M. Di Ventra, Thermoelectric effects in nanoscale junctions, Nano Letters 9, 97 (2009b).
- M. Bandyopadhyay and D. Segal, Quantum heat transfer in harmonic chains with self-consistent reservoirs: Exact numerical simulations, Physical Review E 84, 011151 (2011).
- K. Sääskilahti, J. Oksanen, and J. Tulkki, Thermal balance and quantum heat transport in nanostructures thermalized by local langevin heat baths, Physical Review E 88, 012128 (2013).
- A. Shastry and C. A. Stafford, Temperature and voltage measurement in quantum systems far from equilibrium, Physical Review B 94, 155433 (2016).
- C. A. Stafford, Local temperature of an interacting quantum system far from equilibrium, Physical Review B 93, 245403 (2016).
- C. Braga and K. P. Travis, A configurational temperature nosé-hoover thermostat, The Journal of Chemical Physics 123, 134101 (2005).
- M. D. Ventra and Y. Dubi, Information compressibility, entropy variation and approach to steady state in open systems, EPL (Europhysics Letters) 85, 40004 (2009).
- A. Caso, L. Arrachea, and G. S. Lozano, Local and effective temperatures of quantum driven systems, Physical Review B 81, 041301 (2010).
- A. Caso, L. Arrachea, and G. S. Lozano, Defining the effective temperature of a quantum driven system from current-current correlation functions, The European Physical Journal B 85, 266 (2012).
- T. Yamamoto and K. Watanabe, Nonequilibrium green’s function approach to phonon transport in defective carbon nanotubes, Physical Review Letters 96, 255503 (2006).
- J.-S. Wang, J. Wang, and N. Zeng, Nonequilibrium green’s function approach to mesoscopic thermal transport, Phys. Rev. B 74, 033408 (2006).
- S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Physics Reports 377, 1 (2003).
- L.-A. Wu and D. Segal, Energy flux operator, current conservation and the formal fourier’s law, Journal of Physics A: Mathematical and Theoretical 42, 025302 (2008).
- P. Dugar and C.-C. Chien, Geometry-induced local thermal current from cold to hot in a classical harmonic system, Physical Review E 99, 022131 (2019).
- F. Michelini and K. Beltako, Asymmetry induces long-lasting energy current transients inside molecular loop circuits, Physical Review B 100, 024308 (2019).
- I. Sharony, R. Chen, and A. Nitzan, Stochastic simulation of nonequilibrium heat conduction in extended molecular junctions, The Journal of Chemical Physics 153, 144113 (2020).
- R. Chen, I. Sharony, and A. Nitzan, Local atomic heat currents and classical interference in single-molecule heat conduction, The Journal of Physical Chemistry Letters 11, 4261 (2020).
- N. Kalantar, B. K. Agarwalla, and D. Segal, On the definitions and simulations of vibrational heat transport in nanojunctions, The Journal of Chemical Physics 153, 174101 (2020).
- A. Kara Slimane, P. Reck, and G. Fleury, Simulating time-dependent thermoelectric transport in quantum systems, Physical Review B 101, 235413 (2020).
- P. Dugar and C.-C. Chien, Geometry-based circulation of local thermal current in quantum harmonic and bose-hubbard systems, Physical Review E 105, 064111 (2022).
- T. c. v. Prosen and D. K. Campbell, Momentum conservation implies anomalous energy transport in 1d classical lattices, Phys. Rev. Lett. 84, 2857 (2000).
- L. Arrachea, M. Moskalets, and L. Martin-Moreno, Heat production and energy balance in nanoscale engines driven by time-dependent fields, Phys. Rev. B 75, 245420 (2007).
- R. J. Hardy, Energy-flux operator for a lattice, Physical Review 132, 168 (1963).
- W. N. Mathews, Energy density and current in quantum theory, American Journal of Physics 42, 214 (1974).
- N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic green’s function approach, Physical Review B 68, 245406 (2003).
- N. Mingo, Anharmonic phonon flow through molecular-sized junctions, Physical Review B 74, 125402 (2006).
- M. Luisier, Atomistic modeling of anharmonic phonon-phonon scattering in nanowires, Phys. Rev. B 86, 245407 (2012).
- X. Chen, Y. Liu, and W. Duan, Thermal engineering in low-dimensional quantum devices: A tutorial review of nonequilibrium green’s function methods, Small Methods 2, 1700343 (2018).
- H. Zhou and G. Zhang, General theories and features of interfacial thermal transport*, Chinese Physics B 27, 034401 (2018).
- A. Shastry and C. A. Stafford, Cold spots in quantum systems far from equilibrium: Local entropies and temperatures near absolute zero, Physical Review B 92, 245417 (2015).
- J. Tersoff, Chemical order in amorphous silicon carbide, Physical Review B 49, 16349 (1994).
- L. W. Lee and A. Dhar, Heat conduction in a two-dimensional harmonic crystal with disorder, Physical Review Letters 95, 094302 (2005).
- A. Dhar and D. Roy, Heat transport in harmonic lattices, Journal of Statistical Physics 125, 801 (2006).
- S. Lepri, ed., Thermal Transport in Low Dimensions, Lecture Notes in Physics, Vol. 921 (Springer International Publishing, Cham, 2016).
- M. Datt Bhatt, H. Kim, and G. Kim, Various defects in graphene: A review, RSC Advances 12, 21520 (2022).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.