Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Grained Natural Language Inference Based Faithfulness Evaluation for Diverse Summarisation Tasks (2402.17630v1)

Published 27 Feb 2024 in cs.CL

Abstract: We study existing approaches to leverage off-the-shelf Natural Language Inference (NLI) models for the evaluation of summary faithfulness and argue that these are sub-optimal due to the granularity level considered for premises and hypotheses. That is, the smaller content unit considered as hypothesis is a sentence and premises are made up of a fixed number of document sentences. We propose a novel approach, namely InFusE, that uses a variable premise size and simplifies summary sentences into shorter hypotheses. Departing from previous studies which focus on single short document summarisation, we analyse NLI based faithfulness evaluation for diverse summarisation tasks. We introduce DiverSumm, a new benchmark comprising long form summarisation (long documents and summaries) and diverse summarisation tasks (e.g., meeting and multi-document summarisation). In experiments, InFusE obtains superior performance across the different summarisation tasks. Our code and data are available at https://github.com/HJZnlp/infuse.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Huajian Zhang (8 papers)
  2. Yumo Xu (14 papers)
  3. Laura Perez-Beltrachini (14 papers)
Citations (7)