Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Enhancing Retrieval Processes for Language Generation with Augmented Queries (2402.16874v1)

Published 6 Feb 2024 in cs.IR, cs.AI, and cs.CL

Abstract: In the rapidly changing world of smart technology, searching for documents has become more challenging due to the rise of advanced LLMs. These models sometimes face difficulties, like providing inaccurate information, commonly known as "hallucination." This research focuses on addressing this issue through Retrieval-Augmented Generation (RAG), a technique that guides models to give accurate responses based on real facts. To overcome scalability issues, the study explores connecting user queries with sophisticated LLMs such as BERT and Orca2, using an innovative query optimization process. The study unfolds in three scenarios: first, without RAG, second, without additional assistance, and finally, with extra help. Choosing the compact yet efficient Orca2 7B model demonstrates a smart use of computing resources. The empirical results indicate a significant improvement in the initial LLM's performance under RAG, particularly when assisted with prompts augmenters. Consistency in document retrieval across different encodings highlights the effectiveness of using LLM-generated queries. The introduction of UMAP for BERT further simplifies document retrieval while maintaining strong results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.