High-order topological pumping on a superconducting quantum processor
Abstract: High-order topological phases of matter refer to the systems of $n$-dimensional bulk with the topology of $m$-th order, exhibiting $(n-m)$-dimensional boundary modes and can be characterized by topological pumping. Here, we experimentally demonstrate two types of second-order topological pumps, forming four 0-dimensional corner localized states on a 4$\times$4 square lattice array of 16 superconducting qubits. The initial ground state of the system for half-filling, as a product of four identical entangled 4-qubit states, is prepared using an adiabatic scheme. During the pumping procedure, we adiabatically modulate the superlattice Bose-Hubbard Hamiltonian by precisely controlling both the hopping strengths and on-site potentials. At the half pumping period, the system evolves to a corner-localized state in a quadrupole configuration. The robustness of the second-order topological pump is also investigated by introducing different on-site disorder. Our work studies the topological properties of high-order topological phases from the dynamical transport picture using superconducting qubits, which would inspire further research on high-order topological phases.
- W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357, 61 (2017).
- R. Resta, Quantum-mechanical position operator in extended systems, Phys. Rev. Lett. 80, 1800 (1998).
- R. Citro and M. Aidelsburger, Thouless pumping and topology, Nat. Rev. Phys. 5, 87 (2023).
- R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Science 349, 47 (2015).
- D. Thouless, Quantization of particle transport, Phys. Rev. B 27, 6083 (1983).
- Q. Niu and D. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. A: Math. Gen. 17, 2453 (1984).
- M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Quantized nonlinear Thouless pumping, Nature 596, 63 (2021).
- Y. You, J. Bibo, and F. Pollmann, Higher-order entanglement and many-body invariants for higher-order topological phases, Phys. Rev. Research 2, 033192 (2020).
- F. Grusdt, M. Höning, and M. Fleischhauer, Topological edge states in the one-dimensional superlattice Bose-Hubbard model, Phys. Rev. Lett. 110, 260405 (2013).
- Materials and methods are available as supplementary materials.
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.