High-order topological pumping on a superconducting quantum processor
Abstract: High-order topological phases of matter refer to the systems of $n$-dimensional bulk with the topology of $m$-th order, exhibiting $(n-m)$-dimensional boundary modes and can be characterized by topological pumping. Here, we experimentally demonstrate two types of second-order topological pumps, forming four 0-dimensional corner localized states on a 4$\times$4 square lattice array of 16 superconducting qubits. The initial ground state of the system for half-filling, as a product of four identical entangled 4-qubit states, is prepared using an adiabatic scheme. During the pumping procedure, we adiabatically modulate the superlattice Bose-Hubbard Hamiltonian by precisely controlling both the hopping strengths and on-site potentials. At the half pumping period, the system evolves to a corner-localized state in a quadrupole configuration. The robustness of the second-order topological pump is also investigated by introducing different on-site disorder. Our work studies the topological properties of high-order topological phases from the dynamical transport picture using superconducting qubits, which would inspire further research on high-order topological phases.
- W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357, 61 (2017).
- R. Resta, Quantum-mechanical position operator in extended systems, Phys. Rev. Lett. 80, 1800 (1998).
- R. Citro and M. Aidelsburger, Thouless pumping and topology, Nat. Rev. Phys. 5, 87 (2023).
- R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Science 349, 47 (2015).
- D. Thouless, Quantization of particle transport, Phys. Rev. B 27, 6083 (1983).
- Q. Niu and D. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. A: Math. Gen. 17, 2453 (1984).
- M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Quantized nonlinear Thouless pumping, Nature 596, 63 (2021).
- Y. You, J. Bibo, and F. Pollmann, Higher-order entanglement and many-body invariants for higher-order topological phases, Phys. Rev. Research 2, 033192 (2020).
- F. Grusdt, M. Höning, and M. Fleischhauer, Topological edge states in the one-dimensional superlattice Bose-Hubbard model, Phys. Rev. Lett. 110, 260405 (2013).
- Materials and methods are available as supplementary materials.
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.