Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Practical Insights into Knowledge Distillation for Pre-Trained Models (2402.14922v1)

Published 22 Feb 2024 in cs.LG and cs.AI

Abstract: This research investigates the enhancement of knowledge distillation (KD) processes in pre-trained models, an emerging field in knowledge transfer with significant implications for distributed training and federated learning environments. These environments benefit from reduced communication demands and accommodate various model architectures. Despite the adoption of numerous KD approaches for transferring knowledge among pre-trained models, a comprehensive understanding of KD's application in these scenarios is lacking. Our study conducts an extensive comparison of multiple KD techniques, including standard KD, tuned KD (via optimized temperature and weight parameters), deep mutual learning, and data partitioning KD. We assess these methods across various data distribution strategies to identify the most effective contexts for each. Through detailed examination of hyperparameter tuning, informed by extensive grid search evaluations, we pinpoint when adjustments are crucial to enhance model performance. This paper sheds light on optimal hyperparameter settings for distinct data partitioning scenarios and investigates KD's role in improving federated learning by minimizing communication rounds and expediting the training process. By filling a notable void in current research, our findings serve as a practical framework for leveraging KD in pre-trained models within collaborative and federated learning frameworks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Norah Alballa (2 papers)
  2. Marco Canini (37 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.