Interacting light thermal-relic dark matter: self-consistent cosmological bounds (2402.14223v2)
Abstract: We analyze cosmic microwave background (CMB) data to constrain the mass and interaction strengths of thermally-produced dark matter (DM) in a self-consistent manner, simultaneously taking into account the cosmological effects of its mass and interactions. The presence of a light thermal-relic particle contributes non-negligibly to the radiation density during Big Bang Nucleosynthesis (BBN), altering the light-element yields, as well as the the effective number of relativistic particle species. On the other hand, DM interactions with the Standard Model can affect distribution of matter in later universe. Both mass and interactions alter CMB anisotropy on sub-degree scales. To understand and quantify the interplay of these effects, we consider elastic DM-baryon scattering with a momentum-transfer cross section that scales as a power law of the relative velocity between the scattering particles. In the range of thermal-relic DM masses relevant for BBN ($\lesssim$ 20 MeV), we find that the reconstruction of the DM mass and the scattering cross section from the CMB data features strong degeneracies; modeling the two effects simultaneously increases the sensitivity of the CMB measurements to both fundamental properties of DM. Additionally, we study the effects of late-time residual annihilation of a light thermal relic and provide improved CMB constraints on the DM mass and annihilation cross section. To examine degeneracy between DM mass, cross section for elastic scattering with baryons, and annihilation cross section, we consider a specific case of DM with an electric and magnetic dipole moments. We present new, self-consistent cosmological bounds for this model and discuss implications for future searches.
- F. Zwicky, “Republication of: The redshift of extragalactic nebulae,” General Relativity and Gravitation, vol. 41, no. 1, pp. 207–224, Jan. 2009.
- V. C. Rubin and J. Ford, W. Kent, “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,” ApJ, vol. 159, p. 379, Feb. 1970.
- A. Refregier, “Weak Gravitational Lensing by Large-Scale Structure,” ARA&A, vol. 41, pp. 645–668, Jan. 2003.
- D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, “A Direct Empirical Proof of the Existence of Dark Matter,” ApJL, vol. 648, no. 2, pp. L109–L113, Sep. 2006.
- Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown et al., “Planck 2018 results. VI. Cosmological parameters,” A&A, vol. 641, p. A6, Sep. 2020.
- J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the invisible axion,” Physics Letters B, vol. 120, no. 1-3, pp. 127–132, Jan. 1983.
- G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” PhR, vol. 267, pp. 195–373, Mar. 1996.
- J. L. Feng, M. Kaplinghat, H. Tu, and H.-B. Yu, “Hidden charged dark matter,” JCAP, vol. 2009, no. 7, p. 004, Jul. 2009.
- D. E. Kaplan, M. A. Luty, and K. M. Zurek, “Asymmetric dark matter,” PhRvD, vol. 79, no. 11, p. 115016, Jun. 2009.
- J. Fan, A. Katz, L. Randall, and M. Reece, “Double-Disk Dark Matter,” Physics of the Dark Universe, vol. 2, no. 3, pp. 139–156, Sep. 2013.
- Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker, “The SIMP Miracle,” arXiv e-prints, p. arXiv:1402.5143, Feb. 2014.
- R. T. D’Agnolo and J. T. Ruderman, “Light Dark Matter from Forbidden Channels,” PhRvL, vol. 115, no. 6, p. 061301, Aug. 2015.
- M. Battaglieri, A. Belloni, A. Chou et al., “US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report,” arXiv e-prints, p. arXiv:1707.04591, Jul. 2017.
- Y. B. Zel’dovich, “Magnetic Model of the Universe,” Soviet Journal of Experimental and Theoretical Physics, vol. 21, p. 656, Sep. 1965.
- Y. B. Zeldovic, L. B. Okun, and S. B. Pikelner, “Quarks, astrophysical and physico-chemical aspects,” Physics Letters, vol. 17, no. 2, pp. 164–166, Jul. 1965.
- H.-Y. Chiu, “Symmetry Between Particle and Antiparticle Populations in the Universe,” PhRvL, vol. 17, no. 13, pp. 712–714, Sep. 1966.
- G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: evidence, candidates and constraints,” PhR, vol. 405, no. 5-6, pp. 279–390, Jan. 2005.
- E. W. Kolb, M. S. Turner, and T. P. Walker, “Effect of interacting particles on primordial nucleosynthesis,” PhRvD, vol. 34, no. 8, pp. 2197–2205, Oct. 1986.
- P. D. Serpico and G. G. Raffelt, “MeV-mass dark matter and primordial nucleosynthesis,” PhRvD, vol. 70, no. 4, p. 043526, Aug. 2004.
- C. Boehm, T. A. Enßlin, and J. Silk, “Can annihilating dark matter be lighter than a few GeVs?” Journal of Physics G Nuclear Physics, vol. 30, no. 3, pp. 279–285, Mar. 2004.
- G. Steigman, “Equivalent neutrinos, light WIMPs, and the chimera of dark radiation,” PhRvD, vol. 87, no. 10, p. 103517, May 2013.
- K. M. Nollett and G. Steigman, “BBN and the CMB constrain light, electromagnetically coupled WIMPs,” PhRvD, vol. 89, no. 8, p. 083508, Apr. 2014.
- ——, “BBN and the CMB constrain neutrino coupled light WIMPs,” PhRvD, vol. 91, no. 8, p. 083505, Apr. 2015.
- R. Trotta and S. H. Hansen, “Constraining the helium abundance with CMB data,” PhRvD, vol. 69, no. 2, p. 023509, Jan. 2004.
- K. Ichikawa, T. Sekiguchi, and T. Takahashi, “Primordial helium abundance from CMB: A constraint from recent observations and a forecast,” PhRvD, vol. 78, no. 4, p. 043509, Aug. 2008.
- K. Ichikawa and T. Takahashi, “Reexamining the constraint on the helium abundance from the CMB,” PhRvD, vol. 73, no. 6, p. 063528, Mar. 2006.
- S. Bashinsky and U. Seljak, “Signatures of relativistic neutrinos in CMB anisotropy and matter clustering,” PhRvD, vol. 69, no. 8, p. 083002, Apr. 2004.
- B. Follin, L. Knox, M. Millea, and Z. Pan, “First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background,” PhRvL, vol. 115, no. 9, p. 091301, Aug. 2015.
- Z. Hou, R. Keisler, L. Knox, M. Millea, and C. Reichardt, “How massless neutrinos affect the cosmic microwave background damping tail,” PhRvD, vol. 87, no. 8, p. 083008, Apr. 2013.
- C. Bœhm, M. J. Dolan, and C. McCabe, “A lower bound on the mass of cold thermal dark matter from Planck,” JCAP, vol. 2013, no. 8, p. 041, Aug. 2013.
- G. Steigman and K. M. Nollett, “Light WIMPs, equivalent neutrinos, BBN, and the CMB,” MmSAI, vol. 85, p. 175, Jan. 2014.
- M. Escudero, “Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff𝑒𝑓𝑓{}_{eff}start_FLOATSUBSCRIPT italic_e italic_f italic_f end_FLOATSUBSCRIPT evaluation,” JCAP, vol. 2019, no. 2, p. 007, Feb. 2019.
- C. Giovanetti, M. Lisanti, H. Liu, and J. T. Ruderman, “Joint CMB and BBN Constraints on Light Dark Sectors with Dark Radiation,” arXiv e-prints, p. arXiv:2109.03246, Sep. 2021.
- R. An, V. Gluscevic, E. Calabrese, and J. C. Hill, “What does cosmology tell us about the mass of thermal-relic dark matter?” JCAP, vol. 2022, no. 7, p. 002, Jul. 2022.
- N. Sabti, J. Alvey, M. Escudero, M. Fairbairn, and D. Blas, “Refined bounds on MeV-scale thermal dark sectors from BBN and the CMB,” JCAP, vol. 2020, no. 1, p. 004, Jan. 2020.
- C. Bœhm, P. Fayet, and R. Schaeffer, “Constraining dark matter candidates from structure formation,” Physics Letters B, vol. 518, no. 1-2, pp. 8–14, Oct. 2001.
- C. Bœhm, A. Riazuelo, S. H. Hansen, and R. Schaeffer, “Interacting dark matter disguised as warm dark matter,” PhRvD, vol. 66, no. 8, p. 083505, Oct. 2002.
- C. Boehm, P. Fayet, and R. Schaeffer, “Constraining the strength of dark matter interactions from structure formation,” in Dark Matter in Astro- and Particle Physics, DARK 2002, H. V. Klapdor-Kleingrothaus and R. D. Viollier, Eds., Jan. 2002, pp. 333–344.
- C. Boehm and R. Schaeffer, “Constraints on Dark Matter interactions from structure formation: damping lengths,” A&A, vol. 438, no. 2, pp. 419–442, Aug. 2005.
- C. Dvorkin, K. Blum, and M. Kamionkowski, “Constraining dark matter-baryon scattering with linear cosmology,” PhRvD, vol. 89, no. 2, p. 023519, Jan. 2014.
- V. Gluscevic and K. K. Boddy, “Constraints on Scattering of keV-TeV Dark Matter with Protons in the Early Universe,” PhRvL, vol. 121, no. 8, p. 081301, Aug. 2018.
- K. K. Boddy and V. Gluscevic, “First cosmological constraint on the effective theory of dark matter-proton interactions,” PhRvD, vol. 98, no. 8, p. 083510, Oct. 2018.
- E. O. Nadler, V. Gluscevic, K. K. Boddy, and R. H. Wechsler, “Constraints on Dark Matter Microphysics from the Milky Way Satellite Population,” ApJL, vol. 878, no. 2, p. L32, Jun. 2019.
- K. Maamari, V. Gluscevic, K. K. Boddy, E. O. Nadler, and R. H. Wechsler, “Bounds on Velocity-dependent Dark Matter-Proton Scattering from Milky Way Satellite Abundance,” ApJL, vol. 907, no. 2, p. L46, Feb. 2021.
- D. V. Nguyen, D. Sarnaaik, K. K. Boddy, E. O. Nadler, and V. Gluscevic, “Observational constraints on dark matter scattering with electrons,” PhRvD, vol. 104, no. 10, p. 103521, Nov. 2021.
- W. L. Xu, C. Dvorkin, and A. Chael, “Probing sub-GeV dark matter-baryon scattering with cosmological observables,” PhRvD, vol. 97, no. 10, p. 103530, May 2018.
- T. R. Slatyer and C.-L. Wu, “Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal,” PhRvD, vol. 98, no. 2, p. 023013, Jul. 2018.
- K. K. Boddy, V. Gluscevic, V. Poulin, E. D. Kovetz, M. Kamionkowski, and R. Barkana, “Critical assessment of CMB limits on dark matter-baryon scattering: New treatment of the relative bulk velocity,” PhRvD, vol. 98, no. 12, p. 123506, Dec. 2018.
- X. Chen and M. Kamionkowski, “Particle decays during the cosmic dark ages,” PhRvD, vol. 70, no. 4, p. 043502, Aug. 2004.
- N. Padmanabhan and D. P. Finkbeiner, “Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects,” PhRvD, vol. 72, no. 2, p. 023508, Jul. 2005.
- K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell, and M. Kamionkowski, “Dark-matter electric and magnetic dipole moments,” PhRvD, vol. 70, no. 8, p. 083501, Oct. 2004.
- ——, “Erratum: Dark-matter electric and magnetic dipole moments [Phys. Rev. DPRVDAQ0556-2821 70, 083501 (2004)10.1103/PhysRevD.70.083501],” PhRvD, vol. 73, no. 8, p. 089903, Apr. 2006.
- T. Lin, “TASI lectures on dark matter models and direct detection,” arXiv e-prints, p. arXiv:1904.07915, Apr. 2019.
- B. W. Lee and S. Weinberg, “Cosmological Lower Bound on Heavy Neutrino Masses,” Phys. Rev. Lett., vol. 39, pp. 165–168, 1977.
- K. Griest and D. Seckel, “Three exceptions in the calculation of relic abundances,” Phys. Rev. D, vol. 43, pp. 3191–3203, 1991.
- M. Garny, J. Heisig, B. Lülf, and S. Vogl, “Coannihilation without chemical equilibrium,” Phys. Rev. D, vol. 96, no. 10, p. 103521, 2017.
- R. T. D’Agnolo, D. Pappadopulo, and J. T. Ruderman, “Fourth Exception in the Calculation of Relic Abundances,” Phys. Rev. Lett., vol. 119, no. 6, p. 061102, 2017.
- F. D’Eramo and J. Thaler, “Semi-annihilation of Dark Matter,” JHEP, vol. 06, p. 109, 2010.
- J. Froustey, C. Pitrou, and M. C. Volpe, “Neutrino decoupling including flavour oscillations and primordial nucleosynthesis,” JCAP, vol. 2020, no. 12, p. 015, Dec. 2020.
- J. J. Bennett, G. Buldgen, P. F. de Salas, M. Drewes, S. Gariazzo, S. Pastor, and Y. Y. Y. Wong, “Towards a precision calculation of the effective number of neutrinos N_eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED,” JCAP, vol. 2021, no. 4, p. 073, Apr. 2021.
- Y. Ali-Haïmoud, “Testing dark matter interactions with CMB spectral distortions,” PhRvD, vol. 103, no. 4, p. 043541, Feb. 2021.
- Y. Ali-Haïmoud, J. Chluba, and M. Kamionkowski, “Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions,” PhRvL, vol. 115, no. 7, p. 071304, Aug. 2015.
- J. B. Muñoz, E. D. Kovetz, and Y. Ali-Haïmoud, “Heating of baryons due to scattering with dark matter during the dark ages,” PhRvD, vol. 92, no. 8, p. 083528, Oct. 2015.
- K. K. Boddy, G. Krnjaic, and S. Moltner, “Investigation of CMB constraints for dark matter-helium scattering,” PhRvD, vol. 106, no. 4, p. 043510, Aug. 2022.
- M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt, “Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α𝛼\alphaitalic_α forest data,” PhRvD, vol. 88, no. 4, p. 043502, Aug. 2013.
- V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, S. Cristiani, G. D. Becker, V. D’Odorico, G. Cupani, T.-S. Kim, T. A. M. Berg, S. López, S. Ellison, L. Christensen, K. D. Denney, and G. Worseck, “New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α𝛼\alphaitalic_α forest data,” PhRvD, vol. 96, no. 2, p. 023522, Jul. 2017.
- J. W. Hsueh, W. Enzi, S. Vegetti, M. W. Auger, C. D. Fassnacht, G. Despali, L. V. E. Koopmans, and J. P. McKean, “SHARP - VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars,” MNRAS, vol. 492, no. 2, pp. 3047–3059, Feb. 2020.
- D. Gilman, S. Birrer, A. Nierenberg, T. Treu, X. Du, and A. Benson, “Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses,” MNRAS, vol. 491, no. 4, pp. 6077–6101, Feb. 2020.
- N. Banik, G. Bertone, J. Bovy, and N. Bozorgnia, “Probing the nature of dark matter particles with stellar streams,” JCAP, vol. 2018, no. 7, p. 061, Jul. 2018.
- R. Kennedy, C. Frenk, S. Cole, and A. Benson, “Constraining the warm dark matter particle mass with Milky Way satellites,” MNRAS, vol. 442, no. 3, pp. 2487–2495, Aug. 2014.
- P. Jethwa, D. Erkal, and V. Belokurov, “The upper bound on the lowest mass halo,” MNRAS, vol. 473, no. 2, pp. 2060–2083, Jan. 2018.
- E. O. Nadler, A. Drlica-Wagner, K. Bechtol et al., “Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies,” PhRvL, vol. 126, no. 9, p. 091101, Mar. 2021.
- O. Newton, M. Leo, M. Cautun, A. Jenkins, C. S. Frenk, M. R. Lovell, J. C. Helly, A. J. Benson, and S. Cole, “Constraints on the properties of warm dark matter using the satellite galaxies of the Milky Way,” JCAP, vol. 2021, no. 8, p. 062, Aug. 2021.
- A. D. Dolgov, S. L. Dubovsky, G. I. Rubtsov, and I. I. Tkachev, “Constraints on millicharged particles from Planck data,” PhRvD, vol. 88, no. 11, p. 117701, Dec. 2013.
- E. D. Kovetz, V. Poulin, V. Gluscevic, K. K. Boddy, R. Barkana, and M. Kamionkowski, “Tighter limits on dark matter explanations of the anomalous EDGES 21 cm signal,” PhRvD, vol. 98, no. 10, p. 103529, Nov. 2018.
- S. Knapen, T. Lin, and K. M. Zurek, “Light dark matter: Models and constraints,” PhRvD, vol. 96, no. 11, p. 115021, Dec. 2017.
- X. Chen, S. Hannestad, and R. J. Scherrer, “Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons,” arXiv e-prints, pp. astro–ph/0 202 496, Feb. 2002.
- H. Tashiro, K. Kadota, and J. Silk, “Effects of dark matter-baryon scattering on redshifted 21 cm signals,” PhRvD, vol. 90, no. 8, p. 083522, Oct. 2014.
- R. Barkana, “Possible interaction between baryons and dark-matter particles revealed by the first stars,” Nature, vol. 555, no. 7694, pp. 71–74, Mar. 2018.
- P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: improved analysis.” Nuclear Physics B, vol. 360, no. 1, pp. 145–179, Aug. 1991.
- G. Steigman, B. Dasgupta, and J. F. Beacom, “Precise relic WIMP abundance and its impact on searches for dark matter annihilation,” PhRvD, vol. 86, no. 2, p. 023506, Jul. 2012.
- D. P. Finkbeiner, S. Galli, T. Lin, and T. R. Slatyer, “Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics,” PhRvD, vol. 85, no. 4, p. 043522, Feb. 2012.
- T. R. Slatyer, N. Padmanabhan, and D. P. Finkbeiner, “CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch,” PhRvD, vol. 80, no. 4, p. 043526, Aug. 2009.
- A. Arbey, “AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies,” Computer Physics Communications, vol. 183, no. 8, pp. 1822–1831, Aug. 2012.
- A. Arbey, J. Auffinger, K. P. Hickerson, and E. S. Jenssen, “AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies,” arXiv e-prints, p. arXiv:1806.11095, Jun. 2018.
- J. Lesgourgues, “The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview,” arXiv e-prints, p. arXiv:1104.2932, Apr. 2011.
- D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes,” JCAP, vol. 2011, no. 7, p. 034, Jul. 2011.
- X. Chu, J. Pradler, and L. Semmelrock, “Light dark states with electromagnetic form factors,” Phys. Rev. D, vol. 99, no. 1, p. 015040, 2019.
- J. Torrado and A. Lewis, “Cobaya: code for Bayesian analysis of hierarchical physical models,” JCAP, vol. 2021, no. 5, p. 057, May 2021.
- ——, “Cobaya: Bayesian analysis in cosmology,” p. ascl:1910.019, Oct. 2019.
- A. Gelman and D. B. Rubin, “Inference from Iterative Simulation Using Multiple Sequences,” Statistical Science, vol. 7, pp. 457–472, Jan. 1992.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.