Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Lightweight Machine Learning Approach for Delay-Aware Cell-Switching in 6G HAPS Networks (2402.13096v1)

Published 20 Feb 2024 in cs.NI and eess.SP

Abstract: This study investigates the integration of a high altitude platform station (HAPS), a non-terrestrial network (NTN) node, into the cell-switching paradigm for energy saving. By doing so, the sustainability and ubiquitous connectivity targets can be achieved. Besides, a delay-aware approach is also adopted, where the delay profiles of users are respected in such a way that we attempt to meet the latency requirements of users with a best-effort strategy. To this end, a novel, simple, and lightweight Q-learning algorithm is designed to address the cell-switching optimization problem. During the simulation campaigns, different interference scenarios and delay situations between base stations are examined in terms of energy consumption and quality-of-service (QoS), and the results confirm the efficacy of the proposed Q-learning algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com