Papers
Topics
Authors
Recent
2000 character limit reached

Privacy-Preserving Low-Rank Adaptation against Membership Inference Attacks for Latent Diffusion Models

Published 19 Feb 2024 in cs.LG, cs.CR, and cs.CV | (2402.11989v3)

Abstract: Low-rank adaptation (LoRA) is an efficient strategy for adapting latent diffusion models (LDMs) on a private dataset to generate specific images by minimizing the adaptation loss. However, the LoRA-adapted LDMs are vulnerable to membership inference (MI) attacks that can judge whether a particular data point belongs to the private dataset, thus leading to the privacy leakage. To defend against MI attacks, we first propose a straightforward solution: Membership-Privacy-preserving LoRA (MP-LoRA). MP-LoRA is formulated as a min-max optimization problem where a proxy attack model is trained by maximizing its MI gain while the LDM is adapted by minimizing the sum of the adaptation loss and the MI gain of the proxy attack model. However, we empirically find that MP-LoRA has the issue of unstable optimization, and theoretically analyze that the potential reason is the unconstrained local smoothness, which impedes the privacy-preserving adaptation. To mitigate this issue, we further propose a Stable Membership-Privacy-preserving LoRA (SMP-LoRA) that adapts the LDM by minimizing the ratio of the adaptation loss to the MI gain. Besides, we theoretically prove that the local smoothness of SMP-LoRA can be constrained by the gradient norm, leading to improved convergence. Our experimental results corroborate that SMP-LoRA can indeed defend against MI attacks and generate high-quality images. Our Code is available at \url{https://github.com/WilliamLUO0/StablePrivateLoRA}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.