Minimal Subgroups of ${\rm GL}_2(\mathbb{Z}_{S})$ (2402.11049v4)
Abstract: Let $E$ be an elliptic curve over a number field $L$ and for a finite set $S$ of primes, let $\rho_{E,S} : {\rm Gal}(\overline{L}/L) \to {\rm GL}{2}(\mathbb{Z}{S})$ be the $S$-adic Galois representation. If $L \cap \mathbb{Q}(\zeta_{n}) = \mathbb{Q}$ for all positive integers $n$ whose prime factors are in $S$, then $\det \rho_{E,S} : {\rm Gal}(\overline{L}/L) \to \mathbb{Z}{S}{\times}$ is surjective. We say that a finite index subgroup $H \subseteq {\rm GL}{2}(\mathbb{Z}{S})$ is minimal if $\det : H \to \mathbb{Z}{S}{\times}$ is surjective, but $\det : K \to \mathbb{Z}{S}{\times}$ is not surjective for any proper closed subgroup $K$ of $H$. We show that there are no minimal subgroups of ${\rm GL}{2}(\mathbb{Z}{S})$ unless $S = { 2 }$, while minimal subgroups of ${\rm GL}{2}(\mathbb{Z}{2})$ are plentiful. We give models for all the genus $0$ modular curves associated to minimal subgroups of ${\rm GL}{2}(\mathbb{Z}_{2})$, and construct an infinite family of elliptic curves over imaginary quadratic fields with bad reduction only at $2$ and with minimal $2$-adic image.
- The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
- C. J. Cummins and S. Pauli. Congruence subgroups of PSL(2,ℤ)PSL2ℤ{\rm PSL}(2,{\mathbb{Z}})roman_PSL ( 2 , blackboard_Z ) of genus less than or equal to 24. Experiment. Math., 12(2):243–255, 2003.
- Serre’s constant of elliptic curves over the rationals. Exp. Math., 31(2):518–536, 2022.
- Towards a classification of entanglements of Galois representations attached to elliptic curves. Rev. Mat. Iberoam., 39(3):803–844, 2023.
- A group theoretic perspective on entanglements of division fields. Trans. Amer. Math. Soc. Ser. B, 9:827–858, 2022.
- Analytic pro-p𝑝pitalic_p groups, volume 61 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1999.
- Abstract algebra. John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2004.
- The LMFDB Collaboration. The L-functions and modular forms database. https://www.lmfdb.org, 2023. [Online; accessed 2 August 2023].
- Álvaro Lozano-Robledo. Elliptic curves, modular forms, and their L𝐿Litalic_L-functions, volume 58 of Student Mathematical Library. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 2011. IAS/Park City Mathematical Subseries.
- J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103–150. Springer, New York, 1986.
- Finite index subgroups in profinite groups. C. R. Math. Acad. Sci. Paris, 337(5):303–308, 2003.
- Rakvi. A classification of genus 0 modular curves with rational points, 2023.
- Alain M. Robert. A course in p𝑝pitalic_p-adic analysis, volume 198 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
- ℓℓ\ellroman_ℓ-adic images of Galois for elliptic curves over ℚℚ\mathbb{Q}blackboard_Q (and an appendix with John Voight). Forum Math. Sigma, 10:Paper No. e62, 63, 2022. With an appendix with John Voight.
- Elliptic curves over ℚℚ\mathbb{Q}blackboard_Q and 2-adic images of Galois. Res. Number Theory, 1:Paper No. 12, 34, 2015.
- Jean-Pierre Serre. Abelian l𝑙litalic_l-adic representations and elliptic curves. W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute.
- Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.
- Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
- John Tate. The non-existence of certain Galois extensions of 𝐐𝐐{\bf Q}bold_Q unramified outside 2222. In Arithmetic geometry (Tempe, AZ, 1993), volume 174 of Contemp. Math., pages 153–156. Amer. Math. Soc., Providence, RI, 1994.
- David Zywina. On the possible images of the mod ell representations associated to elliptic curves over ℚℚ\mathbb{\mathbb{Q}}blackboard_Q. arXiv preprint arXiv:1508.07660, 2015.
- David Zywina. Explicit open images for elliptic curves over ℚℚ\mathbb{Q}blackboard_Q. arXiv preprint arXiv:2206.14959, 2022.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.