Papers
Topics
Authors
Recent
2000 character limit reached

Minimal Subgroups of ${\rm GL}_2(\mathbb{Z}_{S})$ (2402.11049v4)

Published 16 Feb 2024 in math.NT

Abstract: Let $E$ be an elliptic curve over a number field $L$ and for a finite set $S$ of primes, let $\rho_{E,S} : {\rm Gal}(\overline{L}/L) \to {\rm GL}{2}(\mathbb{Z}{S})$ be the $S$-adic Galois representation. If $L \cap \mathbb{Q}(\zeta_{n}) = \mathbb{Q}$ for all positive integers $n$ whose prime factors are in $S$, then $\det \rho_{E,S} : {\rm Gal}(\overline{L}/L) \to \mathbb{Z}{S}{\times}$ is surjective. We say that a finite index subgroup $H \subseteq {\rm GL}{2}(\mathbb{Z}{S})$ is minimal if $\det : H \to \mathbb{Z}{S}{\times}$ is surjective, but $\det : K \to \mathbb{Z}{S}{\times}$ is not surjective for any proper closed subgroup $K$ of $H$. We show that there are no minimal subgroups of ${\rm GL}{2}(\mathbb{Z}{S})$ unless $S = { 2 }$, while minimal subgroups of ${\rm GL}{2}(\mathbb{Z}{2})$ are plentiful. We give models for all the genus $0$ modular curves associated to minimal subgroups of ${\rm GL}{2}(\mathbb{Z}_{2})$, and construct an infinite family of elliptic curves over imaginary quadratic fields with bad reduction only at $2$ and with minimal $2$-adic image.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
  2. C. J. Cummins and S. Pauli. Congruence subgroups of PSL⁢(2,ℤ)PSL2ℤ{\rm PSL}(2,{\mathbb{Z}})roman_PSL ( 2 , blackboard_Z ) of genus less than or equal to 24. Experiment. Math., 12(2):243–255, 2003.
  3. Serre’s constant of elliptic curves over the rationals. Exp. Math., 31(2):518–536, 2022.
  4. Towards a classification of entanglements of Galois representations attached to elliptic curves. Rev. Mat. Iberoam., 39(3):803–844, 2023.
  5. A group theoretic perspective on entanglements of division fields. Trans. Amer. Math. Soc. Ser. B, 9:827–858, 2022.
  6. Analytic pro-p𝑝pitalic_p groups, volume 61 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1999.
  7. Abstract algebra. John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2004.
  8. The LMFDB Collaboration. The L-functions and modular forms database. https://www.lmfdb.org, 2023. [Online; accessed 2 August 2023].
  9. Álvaro Lozano-Robledo. Elliptic curves, modular forms, and their L𝐿Litalic_L-functions, volume 58 of Student Mathematical Library. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 2011. IAS/Park City Mathematical Subseries.
  10. J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103–150. Springer, New York, 1986.
  11. Finite index subgroups in profinite groups. C. R. Math. Acad. Sci. Paris, 337(5):303–308, 2003.
  12. Rakvi. A classification of genus 0 modular curves with rational points, 2023.
  13. Alain M. Robert. A course in p𝑝pitalic_p-adic analysis, volume 198 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
  14. ℓℓ\ellroman_ℓ-adic images of Galois for elliptic curves over ℚℚ\mathbb{Q}blackboard_Q (and an appendix with John Voight). Forum Math. Sigma, 10:Paper No. e62, 63, 2022. With an appendix with John Voight.
  15. Elliptic curves over ℚℚ\mathbb{Q}blackboard_Q and 2-adic images of Galois. Res. Number Theory, 1:Paper No. 12, 34, 2015.
  16. Jean-Pierre Serre. Abelian l𝑙litalic_l-adic representations and elliptic curves. W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute.
  17. Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.
  18. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
  19. John Tate. The non-existence of certain Galois extensions of 𝐐𝐐{\bf Q}bold_Q unramified outside 2222. In Arithmetic geometry (Tempe, AZ, 1993), volume 174 of Contemp. Math., pages 153–156. Amer. Math. Soc., Providence, RI, 1994.
  20. David Zywina. On the possible images of the mod ell representations associated to elliptic curves over ℚℚ\mathbb{\mathbb{Q}}blackboard_Q. arXiv preprint arXiv:1508.07660, 2015.
  21. David Zywina. Explicit open images for elliptic curves over ℚℚ\mathbb{Q}blackboard_Q. arXiv preprint arXiv:2206.14959, 2022.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.