A possible late-time transition of $M_B$ inferred via neural networks (2402.10502v2)
Abstract: The strengthening of tensions in the cosmological parameters has led to a reconsideration of fundamental aspects of standard cosmology. The tension in the Hubble constant can also be viewed as a tension between local and early Universe constraints on the absolute magnitude $M_B$ of Type Ia supernova. In this work, we reconsider the possibility of a variation of this parameter in a model-independent way. We employ neural networks to agnostically constrain the value of the absolute magnitude as well as assess the impact and statistical significance of a variation in $M_B$ with redshift from the Pantheon+ compilation, together with a thorough analysis of the neural network architecture. We find an indication for a possible transition redshift at the $z\approx 1$ region.
- P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark Energy,” Rev. Mod. Phys. 75 (2003) 559–606, arXiv:astro-ph/0207347.
- E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D 15 (2006) 1753–1936, arXiv:hep-th/0603057.
- L. Baudis, “Dark matter detection,” J. Phys. G 43 (2016) no. 4, 044001.
- V. Mukhanov, Physical Foundations of Cosmology. Cambridge Univ. Press, Cambridge, 2005. https://cds.cern.ch/record/991646.
- A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D 23 (1981) 347–356.
- A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,” Phys. Lett. B 108 (1982) 389–393.
- S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61 (1989) 1–23.
- R. J. Gaitskell, “Direct detection of dark matter,” Ann. Rev. Nucl. Part. Sci. 54 (2004) 315–359.
- D. Staicova, “Hints of the H0−rdsubscript𝐻0subscript𝑟𝑑H_{0}-r_{d}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_r start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT tension in uncorrelated Baryon Acoustic Oscillations dataset,” in 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. 11, 2021. arXiv:2111.07907 [astro-ph.CO].
- E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38 (2021) no. 15, 153001, arXiv:2103.01183 [astro-ph.CO].
- L. Perivolaropoulos and F. Skara, “Challenges for ΛΛ\Lambdaroman_ΛCDM: An update,” New Astron. Rev. 95 (2022) 101659, arXiv:2105.05208 [astro-ph.CO].
- E. Di Valentino, W. Giarè, A. Melchiorri, and J. Silk, “Health checkup test of the standard cosmological model in view of recent cosmic microwave background anisotropies experiments,” Phys. Rev. D 106 (2022) no. 10, 103506, arXiv:2209.12872 [astro-ph.CO].
- E. O. Colgáin, M. M. Sheikh-Jabbari, and R. Solomon, “High redshift ΛΛ\Lambdaroman_ΛCDM cosmology: To bin or not to bin?,” Phys. Dark Univ. 40 (2023) 101216, arXiv:2211.02129 [astro-ph.CO].
- C. Krishnan, R. Mohayaee, E. O. Colgáin, M. M. Sheikh-Jabbari, and L. Yin, “Hints of FLRW breakdown from supernovae,” Phys. Rev. D 105 (2022) no. 6, 063514, arXiv:2106.02532 [astro-ph.CO].
- R. I. Anderson, N. W. Koblischke, and L. Eyer, “Reconciling astronomical distance scales with variable red giant stars,” arXiv:2303.04790 [astro-ph.CO].
- N. Schöneberg, L. Verde, H. Gil-Marín, and S. Brieden, “BAO+BBN revisited — growing the Hubble tension with a 0.7 km/s/Mpc constraint,” JCAP 11 (2022) 039, arXiv:2209.14330 [astro-ph.CO].
- J. L. Bernal, L. Verde, and A. G. Riess, “The trouble with H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT,” JCAP 10 (2016) 019, arXiv:1607.05617 [astro-ph.CO].
- V. Poulin, T. L. Smith, and T. Karwal, “The Ups and Downs of Early Dark Energy solutions to the Hubble tension: a review of models, hints and constraints circa 2023,” arXiv:2302.09032 [astro-ph.CO].
- E. Di Valentino and A. Melchiorri, “Neutrino Mass Bounds in the Era of Tension Cosmology,” Astrophys. J. Lett. 931 (2022) no. 2, L18, arXiv:2112.02993 [astro-ph.CO].
- Y.-F. Cai, M. Khurshudyan, and E. N. Saridakis, “Model-independent reconstruction of f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity from Gaussian Processes,” Astrophys. J. 888 (2020) 62, arXiv:1907.10813 [astro-ph.CO].
- J. Levi Said, J. Mifsud, J. Sultana, and K. Z. Adami, “Reconstructing teleparallel gravity with cosmic structure growth and expansion rate data,” JCAP 06 (2021) 015, arXiv:2103.05021 [astro-ph.CO].
- C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.
- V. C. Busti, C. Clarkson, and M. Seikel, “The Value of H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from Gaussian Processes,” IAU Symp. 306 (2014) 25–27, arXiv:1407.5227 [astro-ph.CO].
- V. C. Busti, C. Clarkson, and M. Seikel, “Evidence for a Lower Value for H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from Cosmic Chronometers Data?,” Mon. Not. Roy. Astron. Soc. 441 (2014) 11, arXiv:1402.5429 [astro-ph.CO].
- M. Seikel and C. Clarkson, “Optimising Gaussian processes for reconstructing dark energy dynamics from supernovae,” arXiv:1311.6678 [astro-ph.CO].
- R. C. Bernardo and J. Levi Said, “Towards a model-independent reconstruction approach for late-time Hubble data,” JCAP 08 (2021) 027, arXiv:2106.08688 [astro-ph.CO].
- S. Yahya, M. Seikel, C. Clarkson, R. Maartens, and M. Smith, “Null tests of the cosmological constant using supernovae,” Phys. Rev. D 89 (2014) no. 2, 023503, arXiv:1308.4099 [astro-ph.CO].
- M. Seikel, C. Clarkson, and M. Smith, “Reconstruction of dark energy and expansion dynamics using Gaussian processes,” JCAP 2012 (2012) no. 6, 036, arXiv:1204.2832 [astro-ph.CO].
- A. Shafieloo, A. G. Kim, and E. V. Linder, “Gaussian Process Cosmography,” Phys. Rev. D 85 (2012) 123530, arXiv:1204.2272 [astro-ph.CO].
- D. Benisty, “Quantifying the S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension with the Redshift Space Distortion data set,” Phys. Dark Univ. 31 (2021) 100766, arXiv:2005.03751 [astro-ph.CO].
- D. Benisty, J. Mifsud, J. Levi Said, and D. Staicova, “On the robustness of the constancy of the Supernova absolute magnitude: Non-parametric reconstruction & Bayesian approaches,” Phys. Dark Univ. 39 (2023) 101160, arXiv:2202.04677 [astro-ph.CO].
- R. C. Bernardo, D. Grandón, J. Levi Said, and V. H. Cárdenas, “Parametric and nonparametric methods hint dark energy evolution,” Phys. Dark Univ. 36 (2022) 101017, arXiv:2111.08289 [astro-ph.CO].
- R. C. Bernardo, D. Grandón, J. Levi Said, and V. H. Cárdenas, “Dark energy by natural evolution: Constraining dark energy using Approximate Bayesian Computation,” arXiv:2211.05482 [astro-ph.CO].
- C. Escamilla-Rivera, J. Levi Said, and J. Mifsud, “Performance of non-parametric reconstruction techniques in the late-time universe,” JCAP 10 (2021) 016, arXiv:2105.14332 [astro-ph.CO].
- P. Mukherjee and N. Banerjee, “Non-parametric reconstruction of the cosmological jerk parameter,” Eur. Phys. J. C 81 (2021) 36, arXiv:2007.10124 [astro-ph.CO].
- P. Mukherjee and N. Banerjee, “Revisiting a non-parametric reconstruction of the deceleration parameter from combined background and the growth rate data,” Phys. Dark Univ. 36 (2022) 100998, arXiv:2007.15941 [astro-ph.CO].
- R. Shah, A. Bhaumik, P. Mukherjee, and S. Pal, “A thorough investigation of the prospects of eLISA in addressing the Hubble tension: Fisher forecast, MCMC and Machine Learning,” JCAP 06 (2023) 038, arXiv:2301.12708 [astro-ph.CO].
- P. Mukherjee, R. Shah, A. Bhaumik, and S. Pal, “Reconstructing the Hubble Parameter with Future Gravitational-wave Missions Using Machine Learning,” Astrophys. J. 960 (2024) no. 1, 61, arXiv:2303.05169 [astro-ph.CO].
- R. C. Bernardo and J. Levi Said, “A data-driven reconstruction of Horndeski gravity via the Gaussian processes,” JCAP 09 (2021) 014, arXiv:2105.12970 [astro-ph.CO].
- X. Ren, S.-F. Yan, Y. Zhao, Y.-F. Cai, and E. N. Saridakis, “Gaussian processes and effective field theory of f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity under the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension,” Astrophys. J. 932 (2022) 131, arXiv:2203.01926 [astro-ph.CO].
- R. Briffa, S. Capozziello, J. Levi Said, J. Mifsud, and E. N. Saridakis, “Constraining teleparallel gravity through Gaussian processes,” Class. Quant. Grav. 38 (2020) no. 5, 055007, arXiv:2009.14582 [gr-qc].
- Princeton University Press, stu - student edition ed., 2014. http://www.jstor.org/stable/j.ctt4cgbdj.
- C. Escamilla-Rivera, M. A. C. Quintero, and S. Capozziello, “A deep learning approach to cosmological dark energy models,” JCAP 03 (2020) 008, arXiv:1910.02788 [astro-ph.CO].
- C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Springer International Publishing, 2018. https://books.google.com.mt/books?id=achqDwAAQBAJ.
- Y.-C. Wang, Y.-B. Xie, T.-J. Zhang, H.-C. Huang, T. Zhang, and K. Liu, “Likelihood-free Cosmological Constraints with Artificial Neural Networks: An Application on Hubble Parameters and SNe Ia,” Astrophys. J. Supp. 254 (2021) no. 2, 43, arXiv:2005.10628 [astro-ph.CO].
- I. Gómez-Vargas, J. A. Vázquez, R. M. Esquivel, and R. García-Salcedo, “Cosmological Reconstructions with Artificial Neural Networks,” arXiv:2104.00595 [astro-ph.CO].
- G.-J. Wang, X.-J. Ma, S.-Y. Li, and J.-Q. Xia, “Reconstructing Functions and Estimating Parameters with Artificial Neural Networks: A Test with a Hubble Parameter and SNe Ia,” Astrophys. J. Suppl. 246 (2020) no. 1, 13, arXiv:1910.03636 [astro-ph.CO].
- K. Dialektopoulos, J. L. Said, J. Mifsud, J. Sultana, and K. Z. Adami, “Neural network reconstruction of late-time cosmology and null tests,” JCAP 02 (2022) no. 02, 023, arXiv:2111.11462 [astro-ph.CO].
- K. F. Dialektopoulos, P. Mukherjee, J. Levi Said, and J. Mifsud, “Neural network reconstruction of cosmology using the Pantheon compilation,” Eur. Phys. J. C 83 (2023) no. 10, 956, arXiv:2305.15499 [gr-qc].
- P. Mukherjee, J. Levi Said, and J. Mifsud, “Neural network reconstruction of H’(z) and its application in teleparallel gravity,” JCAP 12 (2022) 029, arXiv:2209.01113 [astro-ph.CO].
- K. F. Dialektopoulos, P. Mukherjee, J. Levi Said, and J. Mifsud, “Neural network reconstruction of scalar-tensor cosmology,” Phys. Dark Univ. 43 (2024) 101383, arXiv:2305.15500 [gr-qc].
- D. Camarena, V. Marra, Z. Sakr, and C. Clarkson, “A void in the Hubble tension? The end of the line for the Hubble bubble,” Class. Quant. Grav. 39 (2022) no. 18, 184001, arXiv:2205.05422 [astro-ph.CO].
- D. Camarena and V. Marra, “On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference,” Mon. Not. Roy. Astron. Soc. 504 (2021) 5164–5171, arXiv:2101.08641 [astro-ph.CO].
- G. Efstathiou, “To H0 or not to H0?,” Mon. Not. Roy. Astron. Soc. 505 (2021) no. 3, 3866–3872, arXiv:2103.08723 [astro-ph.CO].
- B. R. Dinda and N. Banerjee, “Model independent bounds on type Ia supernova absolute peak magnitude,” Phys. Rev. D 107 (2023) no. 6, 063513, arXiv:2208.14740 [astro-ph.CO].
- B. R. Dinda, “Minimal model-dependent constraints on cosmological nuisance parameters and cosmic curvature from combinations of cosmological data,” Int. J. Mod. Phys. D 32 (2023) no. 11, 2350079, arXiv:2209.14639 [astro-ph.CO].
- B. R. Dinda, H. Singirikonda, and S. Majumdar, “Constraints on cosmic curvature from cosmic chronometer and quasar observations,” arXiv:2303.15401 [astro-ph.CO].
- N. Banerjee, P. Mukherjee, and D. Pavón, “Checking the second law at cosmic scales,” JCAP 11 (2023) 092, arXiv:2309.12298 [astro-ph.CO].
- P. Mukherjee and A. Mukherjee, “Assessment of the cosmic distance duality relation using Gaussian process,” Mon. Not. Roy. Astron. Soc. 504 (2021) no. 3, 3938–3946, arXiv:2104.06066 [astro-ph.CO].
- R. Shah, S. Saha, P. Mukherjee, U. Garain, and S. Pal, “LADDER: Revisiting the Cosmic Distance Ladder with Deep Learning Approaches and Exploring its Applications,” arXiv:2401.17029 [astro-ph.CO].
- I. Tutusaus, B. Lamine, A. Dupays, and A. Blanchard, “Is cosmic acceleration proven by local cosmological probes?,” Astron. Astrophys. 602 (2017) A73, arXiv:1706.05036 [astro-ph.CO].
- S. Linden, J. M. Virey, and A. Tilquin, “Cosmological parameter extraction and biases from type Ia supernova magnitude evolution,” Astronomy and Astrophysics 506 (2009) no. 3, 1095–1105, arXiv:0907.4495 [astro-ph.CO].
- A. Favale, A. Gómez-Valent, and M. Migliaccio, “Cosmic chronometers to calibrate the ladders and measure the curvature of the Universe. A model-independent study,” Mon. Not. Roy. Astron. Soc. 523 (2023) no. 3, 3406–3422, arXiv:2301.09591 [astro-ph.CO].
- D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” arXiv e-prints (2015) arXiv:1511.07289, arXiv:1511.07289 [cs.LG].
- Y. B. Ian Goodfellow and A. Courville, Deep Learning. MIT Press, 2016.
- D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv e-prints (2014) arXiv:1412.6980, arXiv:1412.6980 [cs.LG].
- K. Hornik, M. Stinchcombe, and H. White, “Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks,” Neural Networks 3 (1990) no. 5, 551–560. https://www.sciencedirect.com/science/article/pii/0893608090900056.
- S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv e-prints (2015) arXiv:1502.03167, arXiv:1502.03167 [cs.LG].
- D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, “Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z)𝐻𝑧H(z)italic_H ( italic_z ) Measurements,” JCAP 02 (2010) 008, arXiv:0907.3149 [astro-ph.CO].
- M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, and D. Wilkinson, “A 6% measurement of the Hubble parameter at z∼0.45similar-to𝑧0.45z\sim 0.45italic_z ∼ 0.45: direct evidence of the epoch of cosmic re-acceleration,” JCAP 05 (2016) 014, arXiv:1601.01701 [astro-ph.CO].
- N. Borghi, M. Moresco, and A. Cimatti, “Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z ∼similar-to\sim∼ 0.7,” Astrophys. J. Lett. 928 (2022) no. 1, L4, arXiv:2110.04304 [astro-ph.CO].
- A. L. Ratsimbazafy, S. I. Loubser, S. M. Crawford, C. M. Cress, B. A. Bassett, R. C. Nichol, and P. Väisänen, “Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope,” Mon. Not. Roy. Astron. Soc. 467 (2017) no. 3, 3239–3254, arXiv:1702.00418 [astro-ph.CO].
- M. Moresco, “Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z𝑧zitalic_z ∼similar-to\sim∼ 2,” Mon. Not. Roy. Astron. Soc. 450 (2015) no. 1, L16–L20, arXiv:1503.01116 [astro-ph.CO].
- C. Zhang, H. Zhang, S. Yuan, T.-J. Zhang, and Y.-C. Sun, “Four new observational H(z)𝐻𝑧H(z)italic_H ( italic_z ) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven,” Res. Astron. Astrophys. 14 (2014) no. 10, 1221–1233, arXiv:1207.4541 [astro-ph.CO].
- M. Moresco, R. Jimenez, L. Verde, A. Cimatti, and L. Pozzetti, “Setting the Stage for Cosmic Chronometers. II. Impact of Stellar Population Synthesis Models Systematics and Full Covariance Matrix,” Astrophys. J. 898 (2020) no. 1, 82, arXiv:2003.07362 [astro-ph.GA].
- D. Camarena and V. Marra, “A new method to build the (inverse) distance ladder,” Mon. Not. Roy. Astron. Soc. 495 (2020) no. 3, 2630–2644, arXiv:1910.14125 [astro-ph.CO].
- A. Gómez-Valent, “Measuring the sound horizon and absolute magnitude of SNIa by maximizing the consistency between low-redshift data sets,” Phys. Rev. D 105 (2022) no. 4, 043528, arXiv:2111.15450 [astro-ph.CO].
- A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, “Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛΛ\Lambdaroman_ΛCDM,” Astrophys. J. Lett. 908 (2021) no. 1, L6, arXiv:2012.08534 [astro-ph.CO].
- J.-P. Hu and F. Y. Wang, “Revealing the late-time transition of H0: relieve the Hubble crisis,” Mon. Not. Roy. Astron. Soc. 517 (2022) no. 1, 576–581, arXiv:2203.13037 [astro-ph.CO].
- E. Pastén and V. H. Cárdenas, “Testing ΛΛ\Lambdaroman_ΛCDM cosmology in a binned universe: Anomalies in the deceleration parameter,” Phys. Dark Univ. 40 (2023) 101224, arXiv:2301.10740 [astro-ph.CO].
- O. Akarsu, E. Di Valentino, S. Kumar, R. C. Nunes, J. A. Vazquez, and A. Yadav, “ΛssubscriptΛs\Lambda_{\rm s}roman_Λ start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPTCDM model: A promising scenario for alleviation of cosmological tensions,” arXiv:2307.10899 [astro-ph.CO].
- E. A. Paraskevas, A. Cam, L. Perivolaropoulos, and O. Akarsu, “Transition dynamics in the ΛssubscriptΛ𝑠\Lambda_{s}roman_Λ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPTCDM model: Implications for bound cosmic structures,” arXiv:2402.05908 [astro-ph.CO].
- L. Perivolaropoulos and F. Skara, “Hubble tension or a transition of the Cepheid SnIa calibrator parameters?,” Phys. Rev. D 104 (2021) no. 12, 123511, arXiv:2109.04406 [astro-ph.CO].
- E. O. Colgáin, S. Pourojaghi, M. M. Sheikh-Jabbari, and D. Sherwin, “MCMC Marginalisation Bias and ΛΛ\Lambdaroman_ΛCDM tensions,” arXiv:2307.16349 [astro-ph.CO].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.