Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-independent cosmological inference post DESI DR1 BAO measurements (2405.19178v2)

Published 29 May 2024 in astro-ph.CO, cs.LG, and gr-qc

Abstract: In this work, we implement Gaussian process regression to reconstruct the expansion history of the universe in a model-agnostic manner, using the Pantheon-Plus SN-Ia compilation in combination with two different BAO measurements (SDSS-IV and DESI DR1). In both the reconstructions, the $\Lambda$CDM model is always included in the 95\% confidence intervals. We find evidence that the DESI LRG data at $z_{\text{eff}} = 0.51$ is not an outlier within our model-independent framework. We study the $\mathcal{O}m$-diagnostics and the evolution of the total equation of state (EoS) of our universe, which hint towards the possibility of a quintessence-like dark energy scenario with a very slowly varying EoS, and a phantom-crossing in higher $z$. The entire exercise is later complemented by considering two more SN-Ia compilations - DES-5YR and Union3 - in combination with DESI BAO. Reconstruction with the DESI BAO + DES-5YR SN data sets predicts that the $\Lambda$CDM model lies outside the 3$\sigma$ confidence levels, whereas with DESI BAO + Union3 data, the $\Lambda$CDM model is always included within 1$\sigma$. We also report constraints on $H_0 r_d$ from our model-agnostic analysis, independent of the pre-recombination physics. Our results point towards an $\approx$ 2$\sigma$ discrepancy between the DESI + Pantheon-Plus and DESI + DES-5YR data sets, which calls for further investigation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. T. Padmanabhan and T. R. Choudhury, “A theoretician’s analysis of the supernova data and the limitations in determining the nature of dark energy,” Mon. Not. Roy. Astron. Soc. 344 (2003) 823–834, arXiv:astro-ph/0212573.
  2. B. A. Bassett and R. Hlozek, “Baryon Acoustic Oscillations,” arXiv:0910.5224 [astro-ph.CO].
  3. E. Di Valentino, A. Melchiorri, and O. Mena, “Can interacting dark energy solve the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension?,” Phys. Rev. D 96 (2017) no. 4, 043503, arXiv:1704.08342 [astro-ph.CO].
  4. S. Pan and W. Yang, “On the interacting dark energy scenarios −-- the case for Hubble constant tension,” arXiv:2310.07260 [astro-ph.CO].
  5. W. Giarè, M. A. Sabogal, R. C. Nunes, and E. Di Valentino, “Interacting Dark Energy after DESI Baryon Acoustic Oscillation measurements,” arXiv:2404.15232 [astro-ph.CO].
  6. R. Shah, P. Mukherjee, and S. Pal, “Reconciling S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT: Insights from Interacting Dark Sectors,” arXiv:2404.06396 [astro-ph.CO].
  7. B. Novosyadlyj, O. Sergijenko, R. Durrer, and V. Pelykh, “Constraining the dynamical dark energy parameters: Planck-2013 vs WMAP9,” JCAP 05 (2014) 030, arXiv:1312.6579 [astro-ph.CO].
  8. D. K. Hazra, S. Majumdar, S. Pal, S. Panda, and A. A. Sen, “Post-Planck Dark Energy Constraints,” Phys. Rev. D 91 (2015) 083005, arXiv:1310.6161 [astro-ph.CO].
  9. J. L. Bernal, L. Verde, and A. G. Riess, “The trouble with H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT,” JCAP 10 (2016) 019, arXiv:1607.05617 [astro-ph.CO].
  10. V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, “Early Dark Energy Can Resolve The Hubble Tension,” Phys. Rev. Lett. 122 (2019) no. 22, 221301, arXiv:1811.04083 [astro-ph.CO].
  11. M. Kamionkowski and A. G. Riess, “The Hubble Tension and Early Dark Energy,” Ann. Rev. Nucl. Part. Sci. 73 (2023) 153–180, arXiv:2211.04492 [astro-ph.CO].
  12. V. Poulin, T. L. Smith, and T. Karwal, “The Ups and Downs of Early Dark Energy solutions to the Hubble tension: A review of models, hints and constraints circa 2023,” Phys. Dark Univ. 42 (2023) 101348, arXiv:2302.09032 [astro-ph.CO].
  13. S. Vagnozzi, “Seven Hints That Early-Time New Physics Alone Is Not Sufficient to Solve the Hubble Tension,” Universe 9 (2023) no. 9, 393, arXiv:2308.16628 [astro-ph.CO].
  14. J.-P. Hu and F.-Y. Wang, “Hubble Tension: The Evidence of New Physics,” Universe 9 (2023) no. 2, 94, arXiv:2302.05709 [astro-ph.CO].
  15. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38 (2021) no. 15, 153001, arXiv:2103.01183 [astro-ph.CO].
  16. P. Shah, P. Lemos, and O. Lahav, “A buyer’s guide to the Hubble constant,” Astron. Astrophys. Rev. 29 (2021) no. 1, 9, arXiv:2109.01161 [astro-ph.CO].
  17. O. Akarsu, E. O. Colgáin, A. A. Sen, and M. M. Sheikh-Jabbari, “ΛΛ\Lambdaroman_ΛCDM Tensions: Localising Missing Physics through Consistency Checks,” arXiv:2402.04767 [astro-ph.CO].
  18. T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann, S. Habib, and D. Higdon, “Nonparametric Reconstruction of the Dark Energy Equation of State from Diverse Data Sets,” Phys. Rev. D 84 (2011) 083501, arXiv:1104.2041 [astro-ph.CO].
  19. M. Seikel, C. Clarkson, and M. Smith, “Reconstruction of dark energy and expansion dynamics using Gaussian processes,” JCAP 06 (2012) 036, arXiv:1204.2832 [astro-ph.CO].
  20. A. Shafieloo, A. G. Kim, and E. V. Linder, “Gaussian Process Cosmography,” Phys. Rev. D 85 (2012) 123530, arXiv:1204.2272 [astro-ph.CO].
  21. P. Mukherjee, Non-parametric Reconstruction Of Some Cosmological Parameters. PhD thesis, IISER, Kolkata, 2022. arXiv:2207.07857 [astro-ph.CO].
  22. B. R. Dinda and N. Banerjee, “Model independent bounds on type Ia supernova absolute peak magnitude,” Phys. Rev. D 107 (2023) no. 6, 063513, arXiv:2208.14740 [astro-ph.CO].
  23. A. Gómez-Valent, A. Favale, M. Migliaccio, and A. A. Sen, “Late-time phenomenology required to solve the H0 tension in view of the cosmic ladders and the anisotropic and angular BAO datasets,” Phys. Rev. D 109 (2024) no. 2, 023525, arXiv:2309.07795 [astro-ph.CO].
  24. P. Mukherjee, K. F. Dialektopoulos, J. Levi Said, and J. Mifsud, “Late-time transition of MBsubscript𝑀𝐵M_{B}italic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT inferred via neural networks,” arXiv:2402.10502 [astro-ph.CO].
  25. D. Camarena and V. Marra, “The tension in the absolute magnitude of Type Ia supernovae,” arXiv:2307.02434 [astro-ph.CO].
  26. V. Sahni, A. Shafieloo, and A. A. Starobinsky, “Two new diagnostics of dark energy,” Phys. Rev. D 78 (2008) 103502, arXiv:0807.3548 [astro-ph].
  27. C. Zunckel and C. Clarkson, “Consistency Tests for the Cosmological Constant,” Phys. Rev. Lett. 101 (2008) 181301, arXiv:0807.4304 [astro-ph].
  28. A. Shafieloo and C. Clarkson, “Model independent tests of the standard cosmological model,” Phys. Rev. D 81 (2010) 083537, arXiv:0911.4858 [astro-ph.CO].
  29. P. Mukherjee and N. Banerjee, “Non-parametric reconstruction of the cosmological j⁢e⁢r⁢k𝑗𝑒𝑟𝑘jerkitalic_j italic_e italic_r italic_k parameter,” Eur. Phys. J. C 81 (2021) no. 1, 36, arXiv:2007.10124 [astro-ph.CO].
  30. E. O. Colgáin, M. G. Dainotti, S. Capozziello, S. Pourojaghi, M. M. Sheikh-Jabbari, and D. Stojkovic, “Does DESI 2024 Confirm ΛΛ\Lambdaroman_ΛCDM?,” arXiv:2404.08633 [astro-ph.CO].
  31. D. Wang, “The Self-Consistency of DESI Analysis and Comment on ”Does DESI 2024 Confirm ΛΛ\Lambdaroman_ΛCDM?”,” arXiv:2404.13833 [astro-ph.CO].
  32. M. Cortês and A. R. Liddle, “Interpreting DESI’s evidence for evolving dark energy,” arXiv:2404.08056 [astro-ph.CO].
  33. S. Nesseris and J. Garcia-Bellido, “A new perspective on Dark Energy modeling via Genetic Algorithms,” JCAP 11 (2012) 033, arXiv:1205.0364 [astro-ph.CO].
  34. R. Arjona, A. Melchiorri, and S. Nesseris, “Testing the ΛΛ\Lambdaroman_ΛCDM paradigm with growth rate data and machine learning,” JCAP 05 (2022) no. 05, 047, arXiv:2107.04343 [astro-ph.CO].
  35. M. R. Gangopadhyay, M. Sami, and M. K. Sharma, “Phantom dark energy as a natural selection of evolutionary processes a^ la genetic algorithm and cosmological tensions,” Phys. Rev. D 108 (2023) no. 10, 103526, arXiv:2303.07301 [astro-ph.CO].
  36. R. Shah, S. Saha, P. Mukherjee, U. Garain, and S. Pal, “LADDER: Revisiting the Cosmic Distance Ladder with Deep Learning Approaches and Exploring its Applications,” arXiv:2401.17029 [astro-ph.CO].
  37. K. F. Dialektopoulos, P. Mukherjee, J. Levi Said, and J. Mifsud, “Neural network reconstruction of cosmology using the Pantheon compilation,” Eur. Phys. J. C 83 (2023) no. 10, 956, arXiv:2305.15499 [gr-qc].
  38. I. Gómez-Vargas, J. B. Andrade, and J. A. Vázquez, “Neural networks optimized by genetic algorithms in cosmology,” Phys. Rev. D 107 (2023) no. 4, 043509, arXiv:2209.02685 [astro-ph.IM].
  39. I. Gómez-Vargas, R. M. Esquivel, R. García-Salcedo, and J. A. Vázquez, “Neural network reconstructions for the Hubble parameter, growth rate and distance modulus,” Eur. Phys. J. C 83 (2023) no. 4, 304, arXiv:2104.00595 [astro-ph.CO].
Citations (12)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com