Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intent Demonstration in General-Sum Dynamic Games via Iterative Linear-Quadratic Approximations (2402.10182v2)

Published 15 Feb 2024 in eess.SY and cs.SY

Abstract: Autonomous agents should be able to coordinate with other agents without knowing their intents ahead of time. While prior work has studied how agents can gather information about the intent of others, in this work, we study the inverse problem: how agents can demonstrate their intent to others, within the framework of general-sum dynamic games. We first present a model of this intent demonstration problem and then propose an algorithm that enables an agent to trade off their task performance and intent demonstration to improve the overall system's performance. To scale to continuous states and action spaces as well as to nonlinear dynamics and costs, our algorithm leverages linear-quadratic approximations with an efficient intent teaching guarantee. Our empirical results show that intent demonstration accelerates other agents' learning and enables the demonstrating agent to balance task performance with intent expression.

Summary

We haven't generated a summary for this paper yet.