Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Prompt Influence on Automated Method Generation: An Empirical Study with Copilot (2402.08430v1)

Published 13 Feb 2024 in cs.SE and cs.AI

Abstract: Generative AI is changing the way developers interact with software systems, providing services that can produce and deliver new content, crafted to satisfy the actual needs of developers. For instance, developers can ask for new code directly from within their IDEs by writing natural language prompts, and integrated services based on generative AI, such as Copilot, immediately respond to prompts by providing ready-to-use code snippets. Formulating the prompt appropriately, and incorporating the useful information while avoiding any information overload, can be an important factor in obtaining the right piece of code. The task of designing good prompts is known as prompt engineering. In this paper, we systematically investigate the influence of eight prompt features on the style and the content of prompts, on the level of correctness, complexity, size, and similarity to the developers' code of the generated code. We specifically consider the task of using Copilot with 124,800 prompts obtained by systematically combining the eight considered prompt features to generate the implementation of 200 Java methods. Results show how some prompt features, such as the presence of examples and the summary of the purpose of the method, can significantly influence the quality of the result.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ionut Daniel Fagadau (2 papers)
  2. Leonardo Mariani (55 papers)
  3. Daniela Micucci (35 papers)
  4. Oliviero Riganelli (32 papers)
Citations (3)