Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Capability enhancement of the X-ray micro-tomography system via ML-assisted approaches (2402.05983v1)

Published 8 Feb 2024 in eess.IV, cs.LG, physics.app-ph, and physics.ins-det

Abstract: Ring artifacts in X-ray micro-CT images are one of the primary causes of concern in their accurate visual interpretation and quantitative analysis. The geometry of X-ray micro-CT scanners is similar to the medical CT machines, except the sample is rotated with a stationary source and detector. The ring artifacts are caused by a defect or non-linear responses in detector pixels during the MicroCT data acquisition. Artifacts in MicroCT images can often be so severe that the images are no longer useful for further analysis. Therefore, it is essential to comprehend the causes of artifacts and potential solutions to maximize image quality. This article presents a convolution neural network (CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder and decoder units with skip connections for removal of ring artifacts. The proposed architecture has been evaluated using the Structural Similarity Index Measure (SSIM) and Mean Squared Error (MSE). Additionally, the results are compared with conventional filter-based non-ML techniques and are found to be better than the latter.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.