Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unichain and Aperiodicity are Sufficient for Asymptotic Optimality of Average-Reward Restless Bandits

Published 8 Feb 2024 in cs.LG, math.OC, and math.PR | (2402.05689v3)

Abstract: We consider the infinite-horizon, average-reward restless bandit problem in discrete time. We propose a new class of policies that are designed to drive a progressively larger subset of arms toward the optimal distribution. We show that our policies are asymptotically optimal with an $O(1/\sqrt{N})$ optimality gap for an $N$-armed problem, assuming only a unichain and aperiodicity assumption. Our approach departs from most existing work that focuses on index or priority policies, which rely on the Global Attractor Property (GAP) to guarantee convergence to the optimum, or a recently developed simulation-based policy, which requires a Synchronization Assumption (SA).

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.