Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond explaining: XAI-based Adaptive Learning with SHAP Clustering for Energy Consumption Prediction (2402.04982v1)

Published 7 Feb 2024 in cs.LG and cs.DB

Abstract: This paper presents an approach integrating explainable artificial intelligence (XAI) techniques with adaptive learning to enhance energy consumption prediction models, with a focus on handling data distribution shifts. Leveraging SHAP clustering, our method provides interpretable explanations for model predictions and uses these insights to adaptively refine the model, balancing model complexity with predictive performance. We introduce a three-stage process: (1) obtaining SHAP values to explain model predictions, (2) clustering SHAP values to identify distinct patterns and outliers, and (3) refining the model based on the derived SHAP clustering characteristics. Our approach mitigates overfitting and ensures robustness in handling data distribution shifts. We evaluate our method on a comprehensive dataset comprising energy consumption records of buildings, as well as two additional datasets to assess the transferability of our approach to other domains, regression, and classification problems. Our experiments demonstrate the effectiveness of our approach in both task types, resulting in improved predictive performance and interpretable model explanations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.