Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Motion Planning and Offline Robust Model Predictive Control for Autonomous Vehicles

Published 7 Feb 2024 in cs.RO | (2402.04769v1)

Abstract: Driving vehicles in complex scenarios under harsh conditions is the biggest challenge for autonomous vehicles (AVs). To address this issue, we propose hierarchical motion planning and robust control strategy using the front-active steering system in complex scenarios with various slippery road adhesion coefficients while considering vehicle uncertain parameters. Behaviors of human vehicles (HVs) are considered and modeled in the form of a car-following model via the Intelligent Driver Model (IDM). Then, in the upper layer, the motion planner first generates an optimal trajectory by using the artificial potential field (APF) algorithm to formulate any surrounding objects, e.g., road marks, boundaries, and static/dynamic obstacles. To track the generated optimal trajectory, in the lower layer, an offline-constrained output feedback robust model predictive control (RMPC) is employed for the linear parameter varying (LPV) system by applying linear matrix inequality (LMI) optimization method that ensures the robustness against the model parameter uncertainties. Furthermore, by augmenting the system model, our proposed approach, called offline RMPC, achieves outstanding efficiency compared to three existing RMPC approaches, e.g., offset-offline RMPC, online RMPC, and offline RMPC without an augmented model (offline RMPC w/o AM), in both improving computing time and reducing input vibrations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.