Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Safety-Critical Framework for UGVs in Complex Environments: A Data-Driven Discrepancy-Aware Approach (2403.03215v1)

Published 5 Mar 2024 in cs.RO

Abstract: This work presents a novel data-driven multi-layered planning and control framework for the safe navigation of a class of unmanned ground vehicles (UGVs) in the presence of unknown stationary obstacles and additive modeling uncertainties. The foundation of this framework is a novel robust model predictive planner, designed to generate optimal collision-free trajectories given an occupancy grid map, and a paired ancillary controller, augmented to provide robustness against model uncertainties extracted from learning data. To tackle modeling discrepancies, we identify both matched (input discrepancies) and unmatched model residuals between the true and the nominal reduced-order models using closed-loop tracking errors as training data. Utilizing conformal prediction, we extract probabilistic upper bounds for the unknown model residuals, which serve to construct a robustifying ancillary controller. Further, we also determine maximum tracking discrepancies, also known as the robust control invariance tube, under the augmented policy, formulating them as collision buffers. Employing a LiDAR-based occupancy map to characterize the environment, we construct a discrepancy-aware cost map that incorporates these collision buffers. This map is then integrated into a sampling-based model predictive path planner that generates optimal and safe trajectories that can be robustly tracked by the augmented ancillary controller in the presence of model mismatches. The effectiveness of the framework is experimentally validated for autonomous high-speed trajectory tracking in a cluttered environment with four different vehicle-terrain configurations. We also showcase the framework's versatility by reformulating it as a driver-assist program, providing collision avoidance corrections based on user joystick commands.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. doi:10.1109/ICRA40945.2020.9197082.
  2. doi:10.1109/AERO47225.2020.9172811.
  3. arXiv:2010.09259.
  4. doi:10.1109/LRA.2022.3188100.
  5. doi:10.1109/ICRA.2017.7989202.
  6. doi:10.1109/TAC.2004.832658.
  7. doi:10.1109/LRA.2023.3292071.
  8. doi:10.1109/LRA.2019.2893494.
  9. doi:10.1109/TRO.2010.2044948.
  10. doi:10.1109/TRO.2011.2161160.
  11. doi:10.1109/LRA.2021.3057563.
  12. doi:10.1145/504729.504754. URL https://doi.org/10.1145/504729.504754
  13. arXiv:2207.10782.
  14. doi:10.1109/LRA.2021.3125047.
  15. arXiv:2311.06234.
  16. doi:10.48550/arXiv.2210.06605.
  17. arXiv:2302.11719.
  18. doi:10.1109/ICARCV50220.2020.9305363.
  19. doi:https://doi.org/10.1016/j.mechmachtheory.2004.05.016. URL https://www.sciencedirect.com/science/article/pii/S0094114X04001478
  20. doi:10.1109/TRO.2018.2865891.
  21. doi:10.1109/ICRA.2016.7487277.
  22. arXiv:2307.01928.
  23. Supplementary video. URL https://youtu.be/0tZagFMfodI
  24. arXiv:2208.04404.

Summary

We haven't generated a summary for this paper yet.