Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Modelling of Ship Wakes in S-Band SAR Images and an Application to Ship Identification (2402.04066v1)

Published 6 Feb 2024 in eess.IV

Abstract: We present a novel ship wake simulation system for generating S-band Synthetic Aperture Radar (SAR) images, and demonstrate the use of such imagery for the classification of ships based on their wake signatures via a deep learning approach. Ship wakes are modeled through the linear superposition of wind-induced sea elevation and the Kelvin wakes model of a moving ship. Our SAR imaging simulation takes into account frequency-dependent radar parameters, i.e., the complex dielectric constant ($\varepsilon$) and the relaxation rate ($\mu$) of seawater. The former was determined through the Debye model while the latter was estimated for S-band SAR based on pre-existing values for the L, C, and X-bands. The results show good agreement between simulated and real imagery upon visual inspection. The results of implementing different training strategies are also reported, showcasing a notable improvement in accuracy of classifier achieved by integrating real and simulated SAR images during the training.

Summary

We haven't generated a summary for this paper yet.