Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploiting the Dual-Tree Complex Wavelet Transform for Ship Wake Detection in SAR Imagery

Published 11 Dec 2020 in eess.IV and eess.SP | (2012.06663v1)

Abstract: In this paper, we analyse synthetic aperture radar (SAR) images of the sea surface using an inverse problem formulation whereby Radon domain information is enhanced in order to accurately detect ship wakes. This is achieved by promoting linear features in the images. For the inverse problem-solving stage, we propose a penalty function, which combines the dual-tree complex wavelet transform (DT-CWT) with the non-convex Cauchy penalty function. The solution to this inverse problem is based on the forward-backward (FB) splitting algorithm to obtain enhanced images in the Radon domain. The proposed method achieves the best results and leads to significant improvement in terms of various performance metrics, compared to state-of-the-art ship wake detection methods. The accuracy of detecting ship wakes in SAR images with different frequency bands and spatial resolution reaches more than 90%, which clearly demonstrates an accuracy gain of 7% compared to the second-best approach.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.