Applying Unsupervised Semantic Segmentation to High-Resolution UAV Imagery for Enhanced Road Scene Parsing (2402.02985v2)
Abstract: There are two challenges presented in parsing road scenes from UAV images: the complexity of processing high-resolution images and the dependency on extensive manual annotations required by traditional supervised deep learning methods to train robust and accurate models. In this paper, a novel unsupervised road parsing framework that leverages advancements in vision LLMs with fundamental computer vision techniques is introduced to address these critical challenges. Our approach initiates with a vision LLM that efficiently processes ultra-high resolution images to rapidly identify road regions of interest. Subsequent application of the vision foundation model, SAM, generates masks for these regions without requiring category information. A self-supervised learning network then processes these masked regions to extract feature representations, which are clustered using an unsupervised algorithm that assigns unique IDs to each feature cluster. The masked regions are combined with the corresponding IDs to generate initial pseudo-labels, which initiate an iterative self-training process for regular semantic segmentation. Remarkably, the proposed method achieves a mean Intersection over Union (mIoU) of 89.96% on the development dataset without any manual annotation, demonstrating extraordinary flexibility by surpassing the limitations of human-defined categories, and autonomously acquiring knowledge of new categories from the dataset itself.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.