Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scribble-based Weakly Supervised Deep Learning for Road Surface Extraction from Remote Sensing Images (2010.13106v1)

Published 25 Oct 2020 in cs.CV

Abstract: Road surface extraction from remote sensing images using deep learning methods has achieved good performance, while most of the existing methods are based on fully supervised learning, which requires a large amount of training data with laborious per-pixel annotation. In this paper, we propose a scribble-based weakly supervised road surface extraction method named ScRoadExtractor, which learns from easily accessible scribbles such as centerlines instead of densely annotated road surface ground-truths. To propagate semantic information from sparse scribbles to unlabeled pixels, we introduce a road label propagation algorithm which considers both the buffer-based properties of road networks and the color and spatial information of super-pixels. The proposal masks generated from the road label propagation algorithm are utilized to train a dual-branch encoder-decoder network we designed, which consists of a semantic segmentation branch and an auxiliary boundary detection branch. We perform experiments on three diverse road datasets that are comprised of highresolution remote sensing satellite and aerial images across the world. The results demonstrate that ScRoadExtractor exceed the classic scribble-supervised segmentation method by 20% for the intersection over union (IoU) indicator and outperform the state-of-the-art scribble-based weakly supervised methods at least 4%.

Citations (75)

Summary

We haven't generated a summary for this paper yet.