Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of Tennis Actions Using Deep Learning (2402.02545v1)

Published 4 Feb 2024 in cs.CV and cs.LG

Abstract: Recent advances of deep learning makes it possible to identify specific events in videos with greater precision. This has great relevance in sports like tennis in order to e.g., automatically collect game statistics, or replay actions of specific interest for game strategy or player improvements. In this paper, we investigate the potential and the challenges of using deep learning to classify tennis actions. Three models of different size, all based on the deep learning architecture SlowFast were trained and evaluated on the academic tennis dataset THETIS. The best models achieve a generalization accuracy of 74 %, demonstrating a good performance for tennis action classification. We provide an error analysis for the best model and pinpoint directions for improvement of tennis datasets in general. We discuss the limitations of the data set, general limitations of current publicly available tennis data-sets, and future steps needed to make progress.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com