Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluating Large Language Models in Analysing Classroom Dialogue

Published 4 Feb 2024 in cs.CL, cs.AI, and cs.HC | (2402.02380v3)

Abstract: This study explores the application of LLMs, specifically GPT-4, in the analysis of classroom dialogue, a crucial research task for both teaching diagnosis and quality improvement. Recognizing the knowledge-intensive and labor-intensive nature of traditional qualitative methods in educational research, this study investigates the potential of LLM to streamline and enhance the analysis process. The study involves datasets from a middle school, encompassing classroom dialogues across mathematics and Chinese classes. These dialogues were manually coded by educational experts and then analyzed using a customised GPT-4 model. This study focuses on comparing manual annotations with the outputs of GPT-4 to evaluate its efficacy in analyzing educational dialogues. Time efficiency, inter-coder agreement, and inter-coder reliability between human coders and GPT-4 are evaluated. Results indicate substantial time savings with GPT-4, and a high degree of consistency in coding between the model and human coders, with some discrepancies in specific codes. These findings highlight the strong potential of LLM in teaching evaluation and facilitation.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.