Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Riemannian Preconditioned LoRA for Fine-Tuning Foundation Models (2402.02347v3)

Published 4 Feb 2024 in cs.LG, cs.NA, math.NA, and math.OC

Abstract: Low-Rank Adaptation (LoRA) emerges as a popular parameter-efficient fine-tuning (PEFT) method, which proposes to freeze pretrained model weights and update an additive low-rank trainable matrix. In this work, we study the enhancement of LoRA training by introducing an $r \times r$ preconditioner in each gradient step where $r$ is the LoRA rank. We theoretically verify that the proposed preconditioner stabilizes feature learning with LoRA under infinite-width NN setting. Empirically, the implementation of this new preconditioner requires a small change to existing optimizer code and creates virtually minuscule storage and runtime overhead. Our experimental results with both LLMs and text-to-image diffusion models show that with this new preconditioner, the convergence and reliability of SGD and AdamW can be significantly enhanced. Moreover, the training process becomes much more robust to hyperparameter choices such as learning rate. The new preconditioner can be derived from a novel Riemannian metric in low-rank matrix field. Code can be accessed at https://github.com/pilancilab/Riemannian_Preconditioned_LoRA.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube