Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensuring Data Privacy in AC Optimal Power Flow with a Distributed Co-Simulation Framework (2402.01001v2)

Published 1 Feb 2024 in cs.DC

Abstract: During the energy transition, the significance of collaborative management among institutions is rising, confronting challenges posed by data privacy concerns. Prevailing research on distributed approaches, as an alternative to centralized management, often lacks numerical convergence guarantees or is limited to single-machine numerical simulation. To address this, we present a distributed approach for solving AC Optimal Power Flow (OPF) problems within a geographically distributed environment. This involves integrating the energy system Co-Simulation (eCoSim) module in the eASiMOV framework with the convergence-guaranteed distributed optimization algorithm, i.e., the Augmented Lagrangian based Alternating Direction Inexact Newton method (ALADIN). Comprehensive evaluations across multiple system scenarios reveal a marginal performance slowdown compared to the centralized approach and the distributed approach executed on single machines -- a justified trade-off for enhanced data privacy. This investigation serves as empirical validation of the successful execution of distributed AC OPF within a geographically distributed environment, highlighting potential directions for future research.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com