Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DNS-Rec: Data-aware Neural Architecture Search for Recommender Systems (2402.00390v2)

Published 1 Feb 2024 in cs.IR and cs.AI

Abstract: In the era of data proliferation, efficiently sifting through vast information to extract meaningful insights has become increasingly crucial. This paper addresses the computational overhead and resource inefficiency prevalent in existing Sequential Recommender Systems (SRSs). We introduce an innovative approach combining pruning methods with advanced model designs. Furthermore, we delve into resource-constrained Neural Architecture Search (NAS), an emerging technique in recommender systems, to optimize models in terms of FLOPs, latency, and energy consumption while maintaining or enhancing accuracy. Our principal contribution is the development of a Data-aware Neural Architecture Search for Recommender System (DNS-Rec). DNS-Rec is specifically designed to tailor compact network architectures for attention-based SRS models, thereby ensuring accuracy retention. It incorporates data-aware gates to enhance the performance of the recommendation network by learning information from historical user-item interactions. Moreover, DNS-Rec employs a dynamic resource constraint strategy, stabilizing the search process and yielding more suitable architectural solutions. We demonstrate the effectiveness of our approach through rigorous experiments conducted on three benchmark datasets, which highlight the superiority of DNS-Rec in SRSs. Our findings set a new standard for future research in efficient and accurate recommendation systems, marking a significant step forward in this rapidly evolving field.

Summary

We haven't generated a summary for this paper yet.