Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moving horizon partition-based state estimation of large-scale systems -- Revised version (2401.17933v1)

Published 31 Jan 2024 in eess.SY and cs.SY

Abstract: This report presents three Moving Horizon Estimation (MHE) methods for discrete-time partitioned linear systems, i.e. systems decomposed into coupled subsystems with non-overlapping states. The MHE approach is used due to its capability of exploiting physical constraints on states in the estimation process. In the proposed algorithms, each subsystem solves reduced-order MHE problems to estimate its own state and different estimators have different computational complexity, accuracy and transmission requirements among subsystems. In all cases, conditions for the convergence of the estimation error to zero are analyzed.

Citations (109)

Summary

We haven't generated a summary for this paper yet.