Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sub-Optimal Moving Horizon Estimation in Feedback Control of Linear Constrained Systems (2304.06216v1)

Published 13 Apr 2023 in eess.SY and cs.SY

Abstract: Moving horizon estimation (MHE) offers benefits relative to other estimation approaches by its ability to explicitly handle constraints, but suffers increased computation cost. To help enable MHE on platforms with limited computation power, we propose to solve the optimization problem underlying MHE sub-optimally for a fixed number of optimization iterations per time step. The stability of the closed-loop system is analyzed using the small-gain theorem by considering the closed-loop controlled system, the optimization algorithm dynamics, and the estimation error dynamics as three interconnected subsystems. By assuming incremental input/output-to-state stability ({\delta}- IOSS) of the system and imposing standard ISS conditions on the controller, we derive conditions on the iteration number such that the interconnected system is input-to-state stable (ISS) w.r.t. the external disturbances. A simulation using an MHE- MPC estimator-controller pair is used to validate the results.

Summary

We haven't generated a summary for this paper yet.