Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-based Moving Horizon Estimation through Differentiable Convex Optimization Layers (2109.03962v3)

Published 8 Sep 2021 in eess.SY and cs.SY

Abstract: To control a dynamical system it is essential to obtain an accurate estimate of the current system state based on uncertain sensor measurements and existing system knowledge. An optimization-based moving horizon estimation (MHE) approach uses a dynamical model of the system, and further allows for integration of physical constraints on system states and uncertainties, to obtain a trajectory of state estimates. In this work, we address the problem of state estimation in the case of constrained linear systems with parametric uncertainty. The proposed approach makes use of differentiable convex optimization layers to formulate an MHE state estimator for systems with uncertain parameters. This formulation allows us to obtain the gradient of a squared and regularized output error, based on sensor measurements and state estimates, with respect to the current belief of the unknown system parameters. The parameters within the MHE problem can then be updated online using stochastic gradient descent (SGD) to improve the performance of the MHE. In a numerical example of estimating temperatures of a group of manufacturing machines, we show the performance of tuning the unknown system parameters and the benefits of integrating physical state constraints in the MHE formulation.

Citations (10)

Summary

We haven't generated a summary for this paper yet.