Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative distributed moving horizon estimation of linear systems with penalties on both system disturbances and noise (2404.06706v1)

Published 10 Apr 2024 in eess.SY and cs.SY

Abstract: In this paper, partition-based distributed state estimation of general linear systems is considered. A distributed moving horizon state estimation scheme is developed via decomposing the entire system model into subsystem models and partitioning the global objective function of centralized moving horizon estimation (MHE) into local objective functions. The subsystem estimators of the distributed scheme that are required to be executed iteratively within each sampling period are designed based on MHE. Two distributed MHE algorithms are proposed to handle the unconstrained case and the case when hard constraints on states and disturbances, respectively. Sufficient conditions on the convergence of the estimates and the stability of the estimation error dynamics for the entire system are derived for both cases. A benchmark reactor-separator process example is introduced to illustrate the proposed distributed state estimation approach.

Citations (7)

Summary

We haven't generated a summary for this paper yet.