Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 51 TPS Pro
GPT-5 Medium 27 TPS
GPT-5 High 30 TPS Pro
GPT-4o 87 TPS
GPT OSS 120B 379 TPS Pro
Kimi K2 185 TPS Pro
2000 character limit reached

Graph Attention-based Reinforcement Learning for Trajectory Design and Resource Assignment in Multi-UAV Assisted Communication (2401.17880v1)

Published 31 Jan 2024 in cs.MA, cs.IT, cs.LG, and math.IT

Abstract: In the multiple unmanned aerial vehicle (UAV)- assisted downlink communication, it is challenging for UAV base stations (UAV BSs) to realize trajectory design and resource assignment in unknown environments. The cooperation and competition between UAV BSs in the communication network leads to a Markov game problem. Multi-agent reinforcement learning is a significant solution for the above decision-making. However, there are still many common issues, such as the instability of the system and low utilization of historical data, that limit its application. In this paper, a novel graph-attention multi-agent trust region (GA-MATR) reinforcement learning framework is proposed to solve the multi-UAV assisted communication problem. Graph recurrent network is introduced to process and analyze complex topology of the communication network, so as to extract useful information and patterns from observational information. The attention mechanism provides additional weighting for conveyed information, so that the critic network can accurately evaluate the value of behavior for UAV BSs. This provides more reliable feedback signals and helps the actor network update the strategy more effectively. Ablation simulations indicate that the proposed approach attains improved convergence over the baselines. UAV BSs learn the optimal communication strategies to achieve their maximum cumulative rewards. Additionally, multi-agent trust region method with monotonic convergence provides an estimated Nash equilibrium for the multi-UAV assisted communication Markov game.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.