Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Insights-based AI-driven Football Transfer Fee Prediction (2401.16795v1)

Published 30 Jan 2024 in cs.LG and cs.AI

Abstract: We developed an artificial intelligence approach to predict the transfer fee of a football player. This model can help clubs make better decisions about which players to buy and sell, which can lead to improved performance and increased club budgets. Having collected data on player performance, transfer fees, and other factors that might affect a player's value, we then used this data to train a machine learning model that can accurately predict a player's impact on the game. We further passed the obtained results as one of the features to the predictor of transfer fees. The model can help clubs identify players who are undervalued and who could be sold for a profit. It can also help clubs avoid overpaying for players. We believe that our model can be a valuable tool for football clubs. It can help them make better decisions about player recruitment and transfers.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets