Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Tracing quantum correlations back to collective interferences (2401.16769v2)

Published 30 Jan 2024 in quant-ph and physics.hist-ph

Abstract: In this paper, we investigate the possibility of explaining nonclassical correlations between two quantum systems in terms of quantum interferences between collective states of the two systems. We achieve this by mapping the relations between different measurement contexts in the product Hilbert space of a pair of two-level systems onto an analogous sequence of interferences between paths in a single-particle interferometer. The relations between different measurement outcomes are then traced to the distribution of probability currents in the interferometer, where paradoxical relations between the outcomes are identified with currents connecting two states that are orthogonal and should therefore exclude each other. We show that the relation between probability currents and correlations can be represented by continuous conditional (quasi)probability currents through the interferometer, given by weak values; the violation of the noncontextual assumption is expressed by negative conditional currents in some of the paths. Since negative conditional currents correspond to the assignment of negative conditional probabilities to measurements results in different measurement contexts, the necessity of such negative probability currents represents a failure of noncontextual local realism. Our results help to explain the meaning of nonlocal correlations in quantum mechanics, and support Feynman's claim that interference is the origin of all quantum phenomena.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Quantum entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009. doi:10.1103/RevModPhys.81.865.
  2. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47:777–780, May 1935. doi:10.1103/PhysRev.47.777.
  3. Bell’s theorem allows local theories of quantum mechanics. Nature Physics, 18(12):1382–1382, Dec 2022. doi:10.1038/s41567-022-01831-5.
  4. Jonte R Hance. Counterfactual restrictions and bell’s theorem. arXiv preprint arXiv:1909.06608, 2019. doi:10.48550/arXiv.1909.06608.
  5. Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities. Phys. Rev. Lett., 49:91–94, Jul 1982. doi:10.1103/PhysRevLett.49.91.
  6. Experimental violation of a bell’s inequality with efficient detection. Nature, 409(6822):791–794, 2 2001. doi:10.1038/35057215.
  7. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575):682–686, 10 2015. doi:10.1038/nature15759.
  8. Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett., 115:250401, 12 2015. doi:10.1103/PhysRevLett.115.250401.
  9. Strong loophole-free test of local realism. Phys. Rev. Lett., 115:250402, 12 2015. doi:10.1103/PhysRevLett.115.250402.
  10. John S Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1(3):195, 1964. doi:10.1103/PhysicsPhysiqueFizika.1.195.
  11. S Kochen and EP Specker. The problem of hidden variables in quantum mechanics. J. Math. Mech., 17:59–87, 1967. doi:10.1007/978-3-0348-9259-9_21.
  12. Kochen-specker contextuality. Rev. Mod. Phys., 94:045007, Dec 2022. doi:10.1103/RevModPhys.94.045007.
  13. Lucien Hardy. Quantum mechanics, local realistic theories, and lorentz-invariant realistic theories. Phys. Rev. Lett., 68:2981–2984, May 1992. doi:10.1103/PhysRevLett.68.2981.
  14. Lucien Hardy. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett., 71:1665–1668, Sep 1993. doi:10.1103/PhysRevLett.71.1665.
  15. Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett., 101:020403, Jul 2008. doi:10.1103/PhysRevLett.101.020403.
  16. Simple hardy-like proof of quantum contextuality. Phys. Rev. Lett., 111:180404, Oct 2013. doi:10.1103/PhysRevLett.111.180404.
  17. Adán Cabello. Proposal for revealing quantum nonlocality via local contextuality. Phys. Rev. Lett., 104:220401, Jun 2010. doi:10.1103/PhysRevLett.104.220401.
  18. Nonlocality from local contextuality. Phys. Rev. Lett., 117:220402, Nov 2016. doi:10.1103/PhysRevLett.117.220402.
  19. Characterization of the nonclassical relation between measurement outcomes represented by nonorthogonal quantum states. Phys. Rev. A, 107:022208, Feb 2023. doi:10.1103/PhysRevA.107.022208.
  20. Quantitative relations between different measurement contexts. arXiv preprint arXiv:2305.14873, 2023. doi:10.48550/arXiv.2305.14873.
  21. Holger F Hofmann. Sequential propagation of a single photon through five measurement contexts in a three-path interferometer. arXiv preprint arXiv:2308.02086, 2023. doi:10.48550/arXiv.2308.02086.
  22. The Feynman Lectures on Physics, Vol. III: The New Millennium Edition: Quantum Mechanics, chapter 1: Quantum Behavior. The Feynman Lectures on Physics. Basic Books, 2011.
  23. Why interference phenomena do not capture the essence of quantum theory. Quantum, 7:1119, September 2023. doi:10.22331/q-2023-09-25-1119.
  24. Comment on” why interference phenomena do not capture the essence of quantum theory” by catani et al. arXiv preprint arXiv:2204.01768, 2022. doi:10.48550/arXiv.2204.01768.
  25. Aspects of the phenomenology of interference that are genuinely nonclassical. Phys. Rev. A, 108:022207, Aug 2023. doi:10.1103/PhysRevA.108.022207.
  26. John G. Kirkwood. Quantum statistics of almost classical assemblies. Phys. Rev., 44:31–37, Jul 1933. doi:10.1103/PhysRev.44.31.
  27. P. A. M. Dirac. On the analogy between classical and quantum mechanics. Rev. Mod. Phys., 17:195–199, Apr 1945. URL: https://link.aps.org/doi/10.1103/RevModPhys.17.195, doi:10.1103/RevModPhys.17.195.
  28. Quasiprobability behind the out-of-time-ordered correlator. Phys. Rev. A, 97:042105, Apr 2018. URL: https://link.aps.org/doi/10.1103/PhysRevA.97.042105, doi:10.1103/PhysRevA.97.042105.
  29. Holger F Hofmann. Complex joint probabilities as expressions of reversible transformations in quantum mechanics. New Journal of Physics, 14(4):043031, apr 2012. doi:10.1088/1367-2630/14/4/043031.
  30. Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett., 108:070402, Feb 2012. URL: https://link.aps.org/doi/10.1103/PhysRevLett.108.070402, doi:10.1103/PhysRevLett.108.070402.
  31. Observing dirac’s classical phase space analog to the quantum state. Phys. Rev. Lett., 112:070405, Feb 2014. URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.070405, doi:10.1103/PhysRevLett.112.070405.
  32. Quantum advantage in postselected metrology. Nature Communications, 11(1):3775, Jul 2020. doi:10.1038/s41467-020-17559-w.
  33. Adán Cabello. Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett., 101:210401, Nov 2008. doi:10.1103/PhysRevLett.101.210401.
  34. Universality of state-independent violation of correlation inequalities for noncontextual theories. Phys. Rev. Lett., 103:050401, Jul 2009. doi:10.1103/PhysRevLett.103.050401.
  35. Optimal inequalities for state-independent contextuality. Phys. Rev. Lett., 109:250402, Dec 2012. doi:10.1103/PhysRevLett.109.250402.
  36. Quantum violation of entropic noncontextual inequality in four dimensions. Phys. Rev. A, 87:014104, Jan 2013. doi:10.1103/PhysRevA.87.014104.
  37. Demonstrating quantum contextuality of indistinguishable particles by a single family of noncontextuality inequalities. Scientific Reports, 5(1):11637, Jun 2015. doi:10.1038/srep11637.
  38. From the kochen-specker theorem to noncontextuality inequalities without assuming determinism. Phys. Rev. Lett., 115:110403, Sep 2015. doi:10.1103/PhysRevLett.115.110403.
  39. Reformulating noncontextuality inequalities in an operational approach. Phys. Rev. A, 94:062103, Dec 2016. doi:10.1103/PhysRevA.94.062103.
  40. Deriving robust noncontextuality inequalities from algebraic proofs of the kochen–specker theorem: the peres–mermin square. New Journal of Physics, 19(12):123031, dec 2017. doi:10.1088/1367-2630/aa9168.
  41. From statistical proofs of the kochen-specker theorem to noise-robust noncontextuality inequalities. Phys. Rev. A, 97:052110, May 2018. doi:10.1103/PhysRevA.97.052110.
  42. All the noncontextuality inequalities for arbitrary prepare-and-measure experiments with respect to any fixed set of operational equivalences. Phys. Rev. A, 97:062103, Jun 2018. doi:10.1103/PhysRevA.97.062103.
  43. Noncontextuality inequalities from antidistinguishability. Phys. Rev. A, 101:062113, Jun 2020. doi:10.1103/PhysRevA.101.062113.
  44. Contextuality, coherences, and quantum cheshire cats. New Journal of Physics, 25:113028, 2023. doi:10.1088/1367-2630/ad0bd4.
  45. Quantum contextuality of complementary photon polarizations explored by adaptive input state control. Phys. Rev. A, 108:062213, Dec 2023. doi:10.1103/PhysRevA.108.062213.
  46. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60:1351–1354, 4 1988. doi:10.1103/PhysRevLett.60.1351.
  47. Properties of a quantum system during the time interval between two measurements. Physical Review A, 41(1):11, 1990. doi:10.1103/PhysRevA.41.11.
  48. Robert W. Spekkens. Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett., 101:020401, Jul 2008. doi:10.1103/PhysRevLett.101.020401.
  49. Matthew F. Pusey. Anomalous weak values are proofs of contextuality. Phys. Rev. Lett., 113:200401, Nov 2014. doi:10.1103/PhysRevLett.113.200401.
  50. Weak values and the past of a quantum particle. Phys. Rev. Res., 5:023048, Apr 2023. doi:10.1103/PhysRevResearch.5.023048.
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.