Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Collaborative Manipulation of Deformable Objects with Predictive Obstacle Avoidance (2401.16560v1)

Published 29 Jan 2024 in cs.RO

Abstract: Manipulating deformable objects arises in daily life and numerous applications. Despite phenomenal advances in industrial robotics, manipulation of deformable objects remains mostly a manual task. This is because of the high number of internal degrees of freedom and the complexity of predicting its motion. In this paper, we apply the computationally efficient position-based dynamics method to predict object motion and distance to obstacles. This distance is incorporated in a control barrier function for the resolved motion kinematic control for one or more robots to adjust their motion to avoid colliding with the obstacles. The controller has been applied in simulations to 1D and 2D deformable objects with varying numbers of assistant agents, demonstrating its versatility across different object types and multi-agent systems. Results indicate the feasibility of real-time collision avoidance through deformable object simulation, minimizing path tracking error while maintaining a predefined minimum distance from obstacles and preventing overstretching of the deformable object. The implementation is performed in ROS, allowing ready portability to different applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi, D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li, J. Pan, W. Yuan, and M. Gienger, “Challenges and Outlook in Robotic Manipulation of Deformable Objects,” IEEE Robotics & Automation Magazine, pp. 2–12, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9721534/
  2. D. Kruse, R. J. Radke, and J. T. Wen, “Collaborative human-robot manipulation of highly deformable materials,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 3782–3787.
  3. R. Herguedas, M. Aranda, G. López-Nicolás, C. Sagüés, and Y. Mezouar, “Multirobot control with double-integrator dynamics and control barrier functions for deformable object transport,” in 2022 International Conference on Robotics and Automation (ICRA), May 2022, pp. 1485–1491.
  4. H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and control methods for deformable object manipulation,” Science Robotics, vol. 6, no. 54, p. eabd8803, May 2021. [Online]. Available: https://www.science.org/doi/10.1126/scirobotics.abd8803
  5. Z. Hu, T. Han, P. Sun, J. Pan, and D. Manocha, “3-D Deformable Object Manipulation Using Deep Neural Networks,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4255–4261, Oct. 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8769898/
  6. O. Aghajanzadeh, G. Picard, J. A. C. Ramon, C. Cariou, R. Lenain, and Y. Mezouar, “Optimal Deformation Control Framework for Elastic Linear Objects,” in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Aug. 2022, pp. 722–728.
  7. O. Aghajanzadeh, M. Aranda, J. A. Corrales Ramon, C. Cariou, R. Lenain, and Y. Mezouar, “Adaptive Deformation Control for Elastic Linear Objects,” Frontiers in Robotics and AI, vol. 9, p. 868459, Apr. 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frobt.2022.868459/full
  8. M. Shetab-Bushehri, M. Aranda, Y. Mezouar, and E. Özgür, “As-Rigid-as-Possible Shape Servoing,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3898–3905, Apr. 2022.
  9. M. Shetab-Bushehri, M. Aranda, Y. Mezouar, and E. Ozgur, “Lattice-based shape tracking and servoing of elastic objects,” Sep. 2022. [Online]. Available: http://arxiv.org/abs/2209.01832
  10. M. Macklin, M. Müller, and N. Chentanez, “XPBD: Position-based simulation of compliant constrained dynamics,” in Proceedings of the 9th International Conference on Motion in Games.   Burlingame California: ACM, Oct. 2016, pp. 49–54. [Online]. Available: https://dl.acm.org/doi/10.1145/2994258.2994272
  11. Y. Yang, J. A. Stork, and T. Stoyanov, “Learning to Propagate Interaction Effects for Modeling Deformable Linear Objects Dynamics,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), May 2021, pp. 1950–1957.
  12. H. Du, Q. Jiang, and W. Xiong, “Computer-assisted assembly process planning for the installation of flexible cables modeled according to a viscoelastic Cosserat rod model,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, p. 09544054221136000, Nov. 2022. [Online]. Available: https://doi.org/10.1177/09544054221136000
  13. F. Jourdes, B. Valentin, J. Allard, C. Duriez, and B. Seeliger, “Visual Haptic Feedback for Training of Robotic Suturing,” Frontiers in Robotics and AI, vol. 9, p. 800232, Feb. 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frobt.2022.800232/full
  14. F. Liu, E. Su, J. Lu, M. Li, and M. C. Yip, “Differentiable Robotic Manipulation of Deformable Rope-like Objects Using Compliant Position-based Dynamics,” Feb. 2022. [Online]. Available: http://arxiv.org/abs/2202.09714
  15. Y. Yang, J. A. Stork, and T. Stoyanov, “Learning differentiable dynamics models for shape control of deformable linear objects,” Robotics and Autonomous Systems, vol. 158, p. 104258, Dec. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921889022001518
  16. ——, “Online Model Learning for Shape Control of Deformable Linear Objects,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2022, pp. 4056–4062.
  17. M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and M. Müller, “Small steps in physics simulation,” in Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation.   Los Angeles California: ACM, Jul. 2019, pp. 1–7. [Online]. Available: https://dl.acm.org/doi/10.1145/3309486.3340247
  18. T. Kugelstadt and E. Schömer, “Position and Orientation Based Cosserat Rods,” Eurographics/ ACM SIGGRAPH Symposium on Computer Animation, p. 10 pages, 2016. [Online]. Available: https://diglib.eg.org/handle/10.2312/sca20161234
  19. L. Xu and Q. Liu, “Real-time inextensible surgical thread simulation,” International Journal of Computer Assisted Radiology and Surgery, vol. 13, no. 7, pp. 1019–1035, Jul. 2018. [Online]. Available: http://link.springer.com/10.1007/s11548-018-1739-1
  20. C. Deul, T. Kugelstadt, M. Weiler, and J. Bender, “Direct Position-Based Solver for Stiff Rods,” Computer Graphics Forum, vol. 37, no. 6, pp. 313–324, Sep. 2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1111/cgf.13326
  21. A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in 53rd IEEE Conference on Decision and Control, Dec. 2014, pp. 6271–6278.
  22. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European Control Conference (ECC), June 2019, pp. 3420–3431.
  23. A. Agrawal and K. Sreenath, “Discrete Control Barrier Functions for Safety-Critical Control of Discrete Systems with Application to Bipedal Robot Navigation,” in Robotics: Science and Systems XIII.   Robotics: Science and Systems Foundation, Jul. 2017. [Online]. Available: http://www.roboticsproceedings.org/rss13/p73.pdf
  24. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control Barrier Function Based Quadratic Programs for Safety Critical Systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.
  25. S. Brüggemann, D. Steeves, and M. Krstic, “Simultaneous Lane-Keeping and Obstacle Avoidance by Combining Model Predictive Control and Control Barrier Functions,” in 2022 IEEE 61st Conference on Decision and Control (CDC), Dec. 2022, pp. 5285–5290.
  26. V. Vulcano, S. G. Tarantos, P. Ferrari, and G. Oriolo, “Safe Robot Navigation in a Crowd Combining NMPC and Control Barrier Functions,” in 2022 IEEE 61st Conference on Decision and Control (CDC), Dec. 2022, pp. 3321–3328.
  27. M. Aranda, J. Sanchez, J. A. C. Ramon, and Y. Mezouar, “Robotic Motion Coordination Based on a Geometric Deformation Measure,” IEEE Systems Journal, vol. 16, no. 3, pp. 3689–3699, Sep. 2022.
  28. R. Herguedas, G. López-Nicolás, and C. Sagüés, “Multirobot Transport of Deformable Objects With Collision Avoidance,” IEEE Systems Journal, pp. 1–11, 2022.
  29. S. Gillies et al., “Shapely: manipulation and analysis of geometric objects,” toblerity.org, 2007–. [Online]. Available: https://github.com/Toblerity/Shapely
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)