Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Multi-Center Classifier via Conditional Gaussian Distribution (2401.15942v1)

Published 29 Jan 2024 in cs.CV

Abstract: The linear classifier is widely used in various image classification tasks. It works by optimizing the distance between a sample and its corresponding class center. However, in real-world data, one class can contain several local clusters, e.g., birds of different poses. To address this complexity, we propose a novel multi-center classifier. Different from the vanilla linear classifier, our proposal is established on the assumption that the deep features of the training set follow a Gaussian Mixture distribution. Specifically, we create a conditional Gaussian distribution for each class and then sample multiple sub-centers from that distribution to extend the linear classifier. This approach allows the model to capture intra-class local structures more efficiently. In addition, at test time we set the mean of the conditional Gaussian distribution as the class center of the linear classifier and follow the vanilla linear classifier outputs, thus requiring no additional parameters or computational overhead. Extensive experiments on image classification show that the proposed multi-center classifier is a powerful alternative to widely used linear classifiers. Code available at https://github.com/ZheminZhang1/MultiCenter-Classifier.

Summary

We haven't generated a summary for this paper yet.