Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion-induced error reduction for high-speed dynamic digital fringe projection system (2401.15938v1)

Published 29 Jan 2024 in cs.CV, cs.SY, and eess.SY

Abstract: In phase-shifting profilometry (PSP), any motion during the acquisition of fringe patterns can introduce errors because it assumes both the object and measurement system are stationary. Therefore, we propose a method to pixel-wise reduce the errors when the measurement system is in motion due to a motorized linear stage. The proposed method introduces motion-induced error reduction algorithm, which leverages the motor's encoder and pinhole model of the camera and projector. 3D shape measurement is possible with only three fringe patterns by applying geometric constraints of the digital fringe projection system. We address the mismatch problem due to the motion-induced camera pixel disparities and reduce phase-shift errors. These processes are easy to implement and require low computational cost. Experimental results demonstrate that the presented method effectively reduces the errors even in non-uniform motion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. Geng, “Structured-light 3d surface imaging: a tutorial,” Advances in optics and photonics, vol. 3, no. 2, pp. 128–160, 2011.
  2. R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping and tracking,” in 2011 10th IEEE international symposium on mixed and augmented reality.   Ieee, 2011, pp. 127–136.
  3. Y. Wang, S. James, E. K. Stathopoulou, C. Beltrán-González, Y. Konishi, and A. Del Bue, “Autonomous 3-d reconstruction, mapping, and exploration of indoor environments with a robotic arm,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3340–3347, 2019.
  4. S. Zhang, “High-speed 3d optical sensing and information processing for automotive industry,” SAE International Journal of Advances and Current Practices in Mobility, vol. 4, no. 2021-01-0303, pp. 198–203, 2021.
  5. Z. Wang, “Review of real-time three-dimensional shape measurement techniques,” Measurement, vol. 156, p. 107624, 2020.
  6. A. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for three-dimensional surface metrology: a review,” JOSA A, vol. 37, no. 9, pp. B60–B77, 2020.
  7. J. Xu and S. Zhang, “Status, challenges, and future perspectives of fringe projection profilometry,” Optics and Lasers in Engineering, vol. 135, p. 106193, 2020.
  8. S. Zhang, “High-speed 3d shape measurement with structured light methods: A review,” Optics and lasers in engineering, vol. 106, pp. 119–131, 2018.
  9. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-d object shapes,” Applied optics, vol. 22, no. 24, pp. 3977–3982, 1983.
  10. K. Creath, “Phase measurement interferometry techniques,” Progress in optics, vol. 26, pp. 348–393, 1988.
  11. I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile robotics tasks: A survey,” Robotics and Autonomous Systems, vol. 66, pp. 86–103, 2015.
  12. L. Lu, V. Suresh, Y. Zheng, Y. Wang, J. Xi, and B. Li, “Motion induced error reduction methods for phase shifting profilometry: A review,” Optics and Lasers in Engineering, vol. 141, p. 106573, 2021.
  13. Y. Gong and S. Zhang, “Ultrafast 3-d shape measurement with an off-the-shelf dlp projector,” Optics express, vol. 18, no. 19, pp. 19 743–19 754, 2010.
  14. S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using gobo projection,” Optics and Lasers in Engineering, vol. 87, pp. 90–96, 2016.
  15. C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro fourier transform profilometry (μ𝜇\muitalic_μftp): 3d shape measurement at 10,000 frames per second,” Optics and Lasers in Engineering, vol. 102, pp. 70–91, 2018.
  16. Z. Wu, W. Guo, Y. Li, Y. Liu, and Q. Zhang, “High-speed and high-efficiency three-dimensional shape measurement based on gray-coded light,” Photonics Research, vol. 8, no. 6, pp. 819–829, 2020.
  17. P. Cong, Y. Zhang, Z. Xiong, S. Zhao, and F. Wu, “Accurate 3d reconstruction of dynamic scenes with fourier transform assisted phase shifting,” in 2013 Visual Communications and Image Processing (VCIP).   IEEE, 2013, pp. 1–6.
  18. P. Cong, Z. Xiong, Y. Zhang, S. Zhao, and F. Wu, “Accurate dynamic 3d sensing with fourier-assisted phase shifting,” IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 3, pp. 396–408, 2014.
  19. B. Li, Z. Liu, and S. Zhang, “Motion-induced error reduction by combining fourier transform profilometry with phase-shifting profilometry,” Optics express, vol. 24, no. 20, pp. 23 289–23 303, 2016.
  20. J. Qian, T. Tao, S. Feng, Q. Chen, and C. Zuo, “Motion-artifact-free dynamic 3d shape measurement with hybrid fourier-transform phase-shifting profilometry,” Optics express, vol. 27, no. 3, pp. 2713–2731, 2019.
  21. W. Guo, Z. Wu, Y. Li, Y. Liu, and Q. Zhang, “Real-time 3d shape measurement with dual-frequency composite grating and motion-induced error reduction,” Optics Express, vol. 28, no. 18, pp. 26 882–26 897, 2020.
  22. F. Wang, C. Wang, and Q. Guan, “Single-shot fringe projection profilometry based on deep learning and computer graphics,” Optics Express, vol. 29, no. 6, pp. 8024–8040, 2021.
  23. A.-H. Nguyen, K. L. Ly, C. Q. Li, and Z. Wang, “Single-shot 3d shape acquisition using a learning-based structured-light technique,” Applied Optics, vol. 61, no. 29, pp. 8589–8599, 2022.
  24. A.-H. Nguyen, K. L. Ly, V. K. Lam, and Z. Wang, “Generalized fringe-to-phase framework for single-shot 3d reconstruction integrating structured light with deep learning,” Sensors, vol. 23, no. 9, p. 4209, 2023.
  25. L. Lu, J. Xi, Y. Yu, and Q. Guo, “New approach to improve the accuracy of 3-d shape measurement of moving object using phase shifting profilometry,” Optics express, vol. 21, no. 25, pp. 30 610–30 622, 2013.
  26. L. Lu, Y. Ding, Y. Luan, Y. Yin, Q. Liu, and J. Xi, “Automated approach for the surface profile measurement of moving objects based on psp,” Optics Express, vol. 25, no. 25, pp. 32 120–32 131, 2017.
  27. M. Duan, Y. Jin, C. Xu, X. Xu, C. Zhu, and E. Chen, “Phase-shifting profilometry for the robust 3-d shape measurement of moving objects,” Optics Express, vol. 27, no. 16, pp. 22 100–22 115, 2019.
  28. Y. Guo, F. Da, and Y. Yu, “High-quality defocusing phase-shifting profilometry on dynamic objects,” Optical Engineering, vol. 57, no. 10, pp. 105 105–105 105, 2018.
  29. L. Lu, Z. Jia, W. Pan, Q. Zhang, M. Zhang, and J. Xi, “Automated reconstruction of multiple objects with individual movement based on psp,” Optics Express, vol. 28, no. 19, pp. 28 600–28 611, 2020.
  30. M. Duan, Y. Jin, H. Chen, J. Zheng, C. Zhu, and E. Chen, “Automatic 3-d measurement method for nonuniform moving objects,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021.
  31. Y. Wang, V. Suresh, and B. Li, “Motion-induced error reduction for binary defocusing profilometry via additional temporal sampling,” Optics Express, vol. 27, no. 17, pp. 23 948–23 958, 2019.
  32. Z. Liu, P. C. Zibley, and S. Zhang, “Motion-induced error compensation for phase shifting profilometry,” Optics Express, vol. 26, no. 10, pp. 12 632–12 637, 2018.
  33. Y. Wang, Z. Liu, C. Jiang, and S. Zhang, “Motion induced phase error reduction using a hilbert transform,” Optics express, vol. 26, no. 26, pp. 34 224–34 235, 2018.
  34. Y. Wang, J. Cai, Y. Liu, X. Chen, and Y. Wang, “Motion-induced error reduction for phase-shifting profilometry with phase probability equalization,” Optics and Lasers in Engineering, vol. 156, p. 107088, 2022.
  35. Y. Wang, H. Zhu, Y. Wang, X. Chen, and Y. Wang, “Efficient half-period phase histogram equalization for general phase-shifting algorithms with phase shift errors,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–10, 2022.
  36. Y. An, J.-S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Optics express, vol. 24, no. 16, pp. 18 445–18 459, 2016.
  37. B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured-light system with an out-of-focus projector,” Applied optics, vol. 53, no. 16, pp. 3415–3426, 2014.

Summary

We haven't generated a summary for this paper yet.