Exploring the compactness of $α$ cluster in $^{16}$O nuclei with relativistic $^{16}$O+$^{16}$O collisions (2401.15723v4)
Abstract: Probing the $\alpha$ cluster of ${16}$O with the relativistic ${16}$O+${16}$O collisions has raised great interest in the heavy ion community. However, the effects of the $\alpha$ cluster on the soft hadron observables vary largely among different studies. In this paper, we explain the differences by the compactness of the $\alpha$ cluster in oxygen, using iEBE-VISHNU hydrodynamic simulations with different initial state $\alpha$ cluster configurations. We also find several observables, such as the intensive skewness of the $[p_{\rm T}]$ correlator $\Gamma_{p_{\rm T}}$, the harmonic flows $v_2{2}$, $v_2{4}$, $v_3{2}$, and the $v_n2-\delta[p_{\rm T}]$ correlations $\rho(v_{2}{2}, [p_{\rm T}])$, $\rho(v_{3}{2}, [p_{\rm T}])$ in ${16}$O+${16}$O collisions are sensitive to the compactness of the $\alpha$ cluster in the colliding nuclei, which can be used to constrain the configurations of ${16}$O in the future. Our study serves as an important step toward the quantitative exploration of the $\alpha$ cluster configuration in the light nuclei with relativistic heavy ion collisions.
- G. Gamow, Constitution of atomic nuclei and radioactivity (Oxford, 1931).
- F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954).
- R. Bijker and F. Iachello, Phys. Rev. Lett. 112, 152501 (2014), arXiv:1403.6773 [nucl-th] .
- R. Bijker and F. Iachello, Nucl. Phys. A 957, 154 (2017), arXiv:1608.07487 [nucl-th] .
- Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007), [Erratum: Prog.Theor.Phys. 121, 895–895 (2009)], arXiv:nucl-th/0605047 .
- D. Dell’Aquila et al., Phys. Rev. Lett. 119, 132501 (2017), arXiv:1705.09196 [nucl-ex] .
- J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
- K. Wildermuth and T. Kanellopoulos, Nuclear Physics 7, 150 (1958).
- H. Feldmeier, Nucl. Phys. A 515, 147 (1990).
- F. Coester, Nuclear Physics 7, 421 (1958).
- W. Broniowski and E. Ruiz Arriola, Phys. Rev. Lett. 112, 112501 (2014), arXiv:1312.0289 [nucl-th] .
- M. Rybczyński and W. Broniowski, Phys. Rev. C 100, 064912 (2019), arXiv:1910.09489 [hep-ph] .
- S. Huang (2023) arXiv:2312.12167 [nucl-ex] .
- D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), arXiv:0804.3501 [nucl-th] .
- H. Song and U. W. Heinz, Phys. Rev. C 77, 064901 (2008a), arXiv:0712.3715 [nucl-th] .
- H. Song and U. W. Heinz, Phys. Lett. B 658, 279 (2008b), arXiv:0709.0742 [nucl-th] .
- S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), arXiv:nucl-th/9803035 .
- M. Bleicher et al., J. Phys. G 25, 1859 (1999), arXiv:hep-ph/9909407 .
- J. Adam et al. (ALICE), Phys. Rev. Lett. 116, 222302 (2016), arXiv:1512.06104 [nucl-ex] .
- S. Chatrchyan et al. (CMS), Phys. Lett. B 724, 213 (2013), arXiv:1305.0609 [nucl-ex] .
- B. B. Abelev et al. (ALICE), Phys. Lett. B 727, 371 (2013), arXiv:1307.1094 [nucl-ex] .
- H. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).
- P. Bozek, Phys. Rev. C 93, 044908 (2016), arXiv:1601.04513 [nucl-th] .
- J. Jia, Phys. Rev. C 105, 014905 (2022), arXiv:2106.08768 [nucl-th] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.