Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LDCA: Local Descriptors with Contextual Augmentation for Few-Shot Learning (2401.13499v1)

Published 24 Jan 2024 in cs.CV

Abstract: Few-shot image classification has emerged as a key challenge in the field of computer vision, highlighting the capability to rapidly adapt to new tasks with minimal labeled data. Existing methods predominantly rely on image-level features or local descriptors, often overlooking the holistic context surrounding these descriptors. In this work, we introduce a novel approach termed "Local Descriptor with Contextual Augmentation (LDCA)". Specifically, this method bridges the gap between local and global understanding uniquely by leveraging an adaptive global contextual enhancement module. This module incorporates a visual transformer, endowing local descriptors with contextual awareness capabilities, ranging from broad global perspectives to intricate surrounding nuances. By doing so, LDCA transcends traditional descriptor-based approaches, ensuring each local feature is interpreted within its larger visual narrative. Extensive experiments underscore the efficacy of our method, showing a maximal absolute improvement of 20\% over the next-best on fine-grained classification datasets, thus demonstrating significant advancements in few-shot classification tasks.

Summary

We haven't generated a summary for this paper yet.