Energy-based stochastic resetting can avoid noise-enhanced stability (2401.10964v1)
Abstract: The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is delayed. Here, we propose a new protocol for stochastic resetting that can avoid the noise-enhanced stability effect. In our approach, instead of resetting the trajectories at certain time intervals, a trajectory is reset when a predefined energy threshold is reached. The trajectories that delay the escape process are the ones that lower their energy due to the stochastic fluctuations. Our resetting approach leverages this fact and avoids long transients by resetting trajectories before they reach low energy levels. Finally, we show that the chaotic dynamics (i.e., the sensitive dependence on initial conditions) catalyzes the effectiveness of the resetting strategy.
- M. R. Evans and S. N. Majumdar, Diffusion with stochastic resetting, Phys. Rev. Lett. 106, 160601 (2011a).
- G. Mercado-Vásquez and D. Boyer, Lotka–Volterra systems with stochastic resetting, J. Phys. A Math. Theor. 51, 405601 (2018).
- J. M. Wolfe and T. S. Horowitz, What attributes guide the deployment of visual attention and how do they do it?, Nat. Rev. Neurosci. 5, 495 (2004).
- S. Reuveni, M. Urbakh, and J. Klafter, Role of substrate unbinding in Michaelis-Menten enzymatic reactions, Proc. Natl. Acad. Sci. U. S. A. 111, 4391 (2014).
- O. L. Bonomo, A. Pal, and S. Reuveni, Mitigating long queues and waiting times with service resetting, PNAS Nexus 1 (2022).
- M. R. Evans, S. N. Majumdar, and G. Schehr, Stochastic resetting and applications, J. Phys. A Math. Theor. 53, 193001 (2020).
- S. Gupta and A. M. Jayannavar, Stochastic Resetting: A (Very) Brief Review, Front. Phys. 10, 789097 (2022).
- U. Bhat, C. De Bacco, and S. Redner, Stochastic search with Poisson and deterministic resetting, J. Stat. Mech. , 083401 (2016).
- P. C. Bressloff, Search processes with stochastic resetting and multiple targets, Phys. Rev. E 102, 022115 (2020).
- A. Nagar and S. Gupta, Stochastic resetting in interacting particle systems: A review, J. Phys. A Math. Theor. 56, 283001 (2023).
- J. Masoliver, Telegraphic processes with stochastic resetting, Phys. Rev. E 99, 012121 (2019).
- A. Pal, Diffusion in a potential landscape with stochastic resetting, Phys. Rev. E 91, 012113 (2015).
- S. Ray and S. Reuveni, Diffusion with resetting in a logarithmic potential, J. Chem. Phys. 152, 234110 (2020).
- R. K. Singh, R. Metzler, and T. Sandev, Resetting dynamics in a confining potential, J. Phys. A Math. Theor. 53, 505003 (2020).
- E. G. Altmann and A. Endler, Noise-enhanced trapping in chaotic scattering, Phys. Rev. Lett. 105, 244102 (2010).
- K. Capała, B. Dybiec, and E. Gudowska-Nowak, Interplay of noise induced stability and stochastic resetting, Chaos 32, 1 (2022).
- A. V. Gordeeva and A. L. Pankratov, Minimization of timing errors in reproduction of single flux quantum pulses, Appl. Phys. Lett. 88, 022505 (2006).
- K. G. Fedorov, A. L. Pankratov, and B. Spagnolo, Influence of length on the noise delayed switching of long Josephson junctions, Int. J. Bifurc. Chaos 18, 2857 (2008).
- M. R. Evans and S. N. Majumdar, Diffusion with optimal resetting, J. Phys. A Math. Theor. 44, 435001 (2011b).
- É. Roldán and S. Gupta, Path-integral formalism for stochastic resetting: Exactly solved examples and shortcuts to confinement, Phys. Rev. E 96, 022130 (2017).
- M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astron. J. 69, 73 (1964).
- P. E. Kloeden and E. Platen, Numerical solutions of stochastic differential equations (Springer, 1992).
- A. Pal and S. Reuveni, First Passage under Restart, Phys. Rev. Lett. 118, 030603 (2017).
- A. R. Nieto, J. M. Seoane, and M. A. F. Sanjuán, Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering, Commun. Nonlinear Sci. Numer. Simul. 102, 105905 (2021b).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.