Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Energy-based stochastic resetting can avoid noise-enhanced stability (2401.10964v1)

Published 19 Jan 2024 in cond-mat.stat-mech, math-ph, and math.MP

Abstract: The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is delayed. Here, we propose a new protocol for stochastic resetting that can avoid the noise-enhanced stability effect. In our approach, instead of resetting the trajectories at certain time intervals, a trajectory is reset when a predefined energy threshold is reached. The trajectories that delay the escape process are the ones that lower their energy due to the stochastic fluctuations. Our resetting approach leverages this fact and avoids long transients by resetting trajectories before they reach low energy levels. Finally, we show that the chaotic dynamics (i.e., the sensitive dependence on initial conditions) catalyzes the effectiveness of the resetting strategy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. M. R. Evans and S. N. Majumdar, Diffusion with stochastic resetting, Phys. Rev. Lett. 106, 160601 (2011a).
  2. G. Mercado-Vásquez and D. Boyer, Lotka–Volterra systems with stochastic resetting, J. Phys. A Math. Theor. 51, 405601 (2018).
  3. J. M. Wolfe and T. S. Horowitz, What attributes guide the deployment of visual attention and how do they do it?, Nat. Rev. Neurosci. 5, 495 (2004).
  4. S. Reuveni, M. Urbakh, and J. Klafter, Role of substrate unbinding in Michaelis-Menten enzymatic reactions, Proc. Natl. Acad. Sci. U. S. A. 111, 4391 (2014).
  5. O. L. Bonomo, A. Pal, and S. Reuveni, Mitigating long queues and waiting times with service resetting, PNAS Nexus 1 (2022).
  6. M. R. Evans, S. N. Majumdar, and G. Schehr, Stochastic resetting and applications, J. Phys. A Math. Theor. 53, 193001 (2020).
  7. S. Gupta and A. M. Jayannavar, Stochastic Resetting: A (Very) Brief Review, Front. Phys. 10, 789097 (2022).
  8. U. Bhat, C. De Bacco, and S. Redner, Stochastic search with Poisson and deterministic resetting, J. Stat. Mech. , 083401 (2016).
  9. P. C. Bressloff, Search processes with stochastic resetting and multiple targets, Phys. Rev. E 102, 022115 (2020).
  10. A. Nagar and S. Gupta, Stochastic resetting in interacting particle systems: A review, J. Phys. A Math. Theor. 56, 283001 (2023).
  11. J. Masoliver, Telegraphic processes with stochastic resetting, Phys. Rev. E 99, 012121 (2019).
  12. A. Pal, Diffusion in a potential landscape with stochastic resetting, Phys. Rev. E 91, 012113 (2015).
  13. S. Ray and S. Reuveni, Diffusion with resetting in a logarithmic potential, J. Chem. Phys. 152, 234110 (2020).
  14. R. K. Singh, R. Metzler, and T. Sandev, Resetting dynamics in a confining potential, J. Phys. A Math. Theor. 53, 505003 (2020).
  15. E. G. Altmann and A. Endler, Noise-enhanced trapping in chaotic scattering, Phys. Rev. Lett. 105, 244102 (2010).
  16. K. Capała, B. Dybiec, and E. Gudowska-Nowak, Interplay of noise induced stability and stochastic resetting, Chaos 32, 1 (2022).
  17. A. V. Gordeeva and A. L. Pankratov, Minimization of timing errors in reproduction of single flux quantum pulses, Appl. Phys. Lett. 88, 022505 (2006).
  18. K. G. Fedorov, A. L. Pankratov, and B. Spagnolo, Influence of length on the noise delayed switching of long Josephson junctions, Int. J. Bifurc. Chaos 18, 2857 (2008).
  19. M. R. Evans and S. N. Majumdar, Diffusion with optimal resetting, J. Phys. A Math. Theor. 44, 435001 (2011b).
  20. É. Roldán and S. Gupta, Path-integral formalism for stochastic resetting: Exactly solved examples and shortcuts to confinement, Phys. Rev. E 96, 022130 (2017).
  21. M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astron. J. 69, 73 (1964).
  22. P. E. Kloeden and E. Platen, Numerical solutions of stochastic differential equations (Springer, 1992).
  23. A. Pal and S. Reuveni, First Passage under Restart, Phys. Rev. Lett. 118, 030603 (2017).
  24. A. R. Nieto, J. M. Seoane, and M. A. F. Sanjuán, Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering, Commun. Nonlinear Sci. Numer. Simul. 102, 105905 (2021b).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: