Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear Kloosterman sums in function fields and the distribution of irreducible polynomials (2401.10399v1)

Published 18 Jan 2024 in math.NT

Abstract: Inspired by the work of Bourgain and Garaev (2013), we provide new bounds for certain weighted bilinear Kloosterman sums in polynomial rings over a finite field. As an application, we build upon and extend some results of Sawin and Shusterman (2022). These results include bounds for exponential sums weighted by the M\"obius function and a level of distribution for irreducible polynomials beyond 1/2, with arbitrary composite modulus. Additionally, we can do better when averaging over the modulus, to give an analogue of the Bombieri-Vinogradov Theorem with a level of distribution even further beyond 1/2.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. C. Bagshaw. Bilinear forms with Kloosterman and Gauss sums in function fields. https://arxiv.org/abs/2304.05014, 2023.
  2. C. Bagshaw. Square-free smooth polynomials in residue classes and generators of irreducible polynomials. Proc. Amer. Math. Soc., 151(03):1017–1029, 2023.
  3. C. Bagshaw and B. Kerr. Lattices in function fields and applications. https://arxiv.org/abs/2304.05009, 2023.
  4. C. Bagshaw and I. Shparlinski. Energy bounds, bilinear forms and their applications in function fields. Finite Fields Appl., 82:102048, 2022.
  5. R. Baker. Kloosterman sums with prime variable. Acta Arith., 156(4):351–372, 2012.
  6. Short Kloosterman sums for polynomials over finite fields. Canad. J. Math., 55(2):225–246, 2003.
  7. A note on character sums in finite fields. Finite Fields Appl., 46:247–254, 2017.
  8. J. Bourgain and M. Z. Garaev. Kloosterman sums in residue rings. https://doi.org/10.48550/arXiv.1309.1124, 2013.
  9. J. Bourgain and M. Z. Garaev. Sumsets of reciprocals in prime fields and multilinear Kloosterman sums. Izv. Math., 78:656, 2014.
  10. J. Cilleruelo and I. Shparlinski. Concentration of points on curves in finite fields. Monatsh. Math., 171(3):315–327, 2013.
  11. É. Fouvry and P. Michel. Sur certaines sommes d’exponentielles sur les nombres premiers. Ann. Sci. Ec. Norm. Sup´er., 31(1):93–130, 1998.
  12. É. Fouvry and I. Shparlinski. On a ternary quadratic form over primes. Acta Arith., 150(3):285–314, 2011.
  13. J. Friedlander and H. Iwaniec. The Brun-Titchmarsh theorem. London Math. Soc. Lecture Note Ser, 247, 1997.
  14. M. Z. Garaev. Estimation of Kloosterman sums with primes and its application. Math. Notes, 88:330–337, 2010.
  15. D. Han. A note on character sums in function fields. Finite Fields Appl., 68:101734, 2020.
  16. D. Hayes. The expression of a polynomial as a sum of three irreducibles. Acta. Arith., 11:461–481, 1966.
  17. A. Irving. Average bounds for Kloosterman sums over primes. Funct. Approx. Comment. Math., 51(2):221–235, 2014.
  18. H. Iwaniec and E. Kowalski. Analytic number theory, volume 53. American Mathematical Soc., 2004.
  19. A. Karatsuba. Fractional parts of functions of a special form. Izv. Math., 59:721–740, 1995.
  20. New estimate for Kloosterman sums with primes. Math. Notes, 108(1-2):87–93, 2020.
  21. W. Luo. Bounds for incomplete hyper-Kloosterman sums. J. Number Theory, 75(1):41–46, 1999.
  22. Michael Rosen. Number theory in function fields, volume 210. Springer Science & Business Media, 2013.
  23. W. Sawin. Square-root cancellation for sums of factorization functions over square-free progressions in Fq[t]. Acta Math. (to appear).
  24. W. Sawin and M. Shusterman. Möbius cancellation on polynomial sequences and the quadratic Bateman—Horn conjecture over function fields. Invent. Math., 229(2):751–927, 2022.
  25. W. Sawin and M. Shusterman. On the Chowla and twin primes conjectures over Fq[T]. Ann. Math., 196:457–506, 2022.
  26. I. Shparlinski and A. Zumalacárregui. Sums of inverses in thin sets of finite fields. Proc. Amer. Math. Soc., 146:1377–1388, 2018.
  27. I. E. Shparlinski. Bounds of incomplete multiple Kloosterman sums. J. Number Theory, 126(1):68–73, 2007.

Summary

We haven't generated a summary for this paper yet.