2000 character limit reached
Bilinear Kloosterman sums in function fields and the distribution of irreducible polynomials (2401.10399v1)
Published 18 Jan 2024 in math.NT
Abstract: Inspired by the work of Bourgain and Garaev (2013), we provide new bounds for certain weighted bilinear Kloosterman sums in polynomial rings over a finite field. As an application, we build upon and extend some results of Sawin and Shusterman (2022). These results include bounds for exponential sums weighted by the M\"obius function and a level of distribution for irreducible polynomials beyond 1/2, with arbitrary composite modulus. Additionally, we can do better when averaging over the modulus, to give an analogue of the Bombieri-Vinogradov Theorem with a level of distribution even further beyond 1/2.
- C. Bagshaw. Bilinear forms with Kloosterman and Gauss sums in function fields. https://arxiv.org/abs/2304.05014, 2023.
- C. Bagshaw. Square-free smooth polynomials in residue classes and generators of irreducible polynomials. Proc. Amer. Math. Soc., 151(03):1017–1029, 2023.
- C. Bagshaw and B. Kerr. Lattices in function fields and applications. https://arxiv.org/abs/2304.05009, 2023.
- C. Bagshaw and I. Shparlinski. Energy bounds, bilinear forms and their applications in function fields. Finite Fields Appl., 82:102048, 2022.
- R. Baker. Kloosterman sums with prime variable. Acta Arith., 156(4):351–372, 2012.
- Short Kloosterman sums for polynomials over finite fields. Canad. J. Math., 55(2):225–246, 2003.
- A note on character sums in finite fields. Finite Fields Appl., 46:247–254, 2017.
- J. Bourgain and M. Z. Garaev. Kloosterman sums in residue rings. https://doi.org/10.48550/arXiv.1309.1124, 2013.
- J. Bourgain and M. Z. Garaev. Sumsets of reciprocals in prime fields and multilinear Kloosterman sums. Izv. Math., 78:656, 2014.
- J. Cilleruelo and I. Shparlinski. Concentration of points on curves in finite fields. Monatsh. Math., 171(3):315–327, 2013.
- É. Fouvry and P. Michel. Sur certaines sommes d’exponentielles sur les nombres premiers. Ann. Sci. Ec. Norm. Sup´er., 31(1):93–130, 1998.
- É. Fouvry and I. Shparlinski. On a ternary quadratic form over primes. Acta Arith., 150(3):285–314, 2011.
- J. Friedlander and H. Iwaniec. The Brun-Titchmarsh theorem. London Math. Soc. Lecture Note Ser, 247, 1997.
- M. Z. Garaev. Estimation of Kloosterman sums with primes and its application. Math. Notes, 88:330–337, 2010.
- D. Han. A note on character sums in function fields. Finite Fields Appl., 68:101734, 2020.
- D. Hayes. The expression of a polynomial as a sum of three irreducibles. Acta. Arith., 11:461–481, 1966.
- A. Irving. Average bounds for Kloosterman sums over primes. Funct. Approx. Comment. Math., 51(2):221–235, 2014.
- H. Iwaniec and E. Kowalski. Analytic number theory, volume 53. American Mathematical Soc., 2004.
- A. Karatsuba. Fractional parts of functions of a special form. Izv. Math., 59:721–740, 1995.
- New estimate for Kloosterman sums with primes. Math. Notes, 108(1-2):87–93, 2020.
- W. Luo. Bounds for incomplete hyper-Kloosterman sums. J. Number Theory, 75(1):41–46, 1999.
- Michael Rosen. Number theory in function fields, volume 210. Springer Science & Business Media, 2013.
- W. Sawin. Square-root cancellation for sums of factorization functions over square-free progressions in Fq[t]. Acta Math. (to appear).
- W. Sawin and M. Shusterman. Möbius cancellation on polynomial sequences and the quadratic Bateman—Horn conjecture over function fields. Invent. Math., 229(2):751–927, 2022.
- W. Sawin and M. Shusterman. On the Chowla and twin primes conjectures over Fq[T]. Ann. Math., 196:457–506, 2022.
- I. Shparlinski and A. Zumalacárregui. Sums of inverses in thin sets of finite fields. Proc. Amer. Math. Soc., 146:1377–1388, 2018.
- I. E. Shparlinski. Bounds of incomplete multiple Kloosterman sums. J. Number Theory, 126(1):68–73, 2007.