Affine Classical Lie Bialgebras for AdS/CFT Integrability (2401.10327v1)
Abstract: In this article we continue the classical analysis of the symmetry algebra underlying the integrability of the spectrum in the AdS_5/CFT_4 and in the Hubbard model. We extend the construction of the quasi-triangular Lie bialgebra gl(2|2) by contraction and reduction studied in the earlier work to the case of the affine algebra sl(2)1 times d(2,1;alpha)1. The reduced affine derivation naturally measures the deviation of the classical r-matrix from the difference form. Moreover, it implements a Lorentz boost symmetry, originally suggested to be related to a q-deformed 2D Poincare algebra. We also discuss the classical double construction for the bialgebra of interest and comment on the representation of the affine structure.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200.
- R. R. Metsaev and A. A. Tseytlin, “Type IIB superstring action in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT background”, Nucl. Phys. B 533, 109 (1998), hep-th/9805028.
- L. Brink, J. H. Schwarz and J. Scherk, “Supersymmetric Yang-Mills Theories”, Nucl. Phys. B 121, 77 (1977).
- N. Beisert et al., “Review of AdS/CFT Integrability: An Overview”, Lett. Math. Phys. 99, 3 (2012), arxiv:1012.3982.
- D. Bombardelli et al., “An integrability primer for the gauge-gravity correspondence: An introduction”, J. Phys. A 49, 320301 (2016), arxiv:1606.02945.
- J. A. Minahan and K. Zarembo, “The Bethe ansatz for N = 4 superYang-Mills”, JHEP 0303, 013 (2003), hep-th/0212208.
- N. Beisert, C. Kristjansen and M. Staudacher, “The Dilatation operator of conformal N = 4 superYang-Mills theory”, Nucl. Phys. B 664, 131 (2003), hep-th/0303060.
- N. Beisert and M. Staudacher, “The N = 4 SYM integrable super spin chain”, Nucl. Phys. B 670, 439 (2003), hep-th/0307042.
- N. Beisert, “The su(2///3) dynamic spin chain”, Nucl. Phys. B 682, 487 (2004), hep-th/0310252.
- N. Beisert, “The Dilatation operator of N = 4 super Yang-Mills theory and integrability”, Phys. Rept. 405, 1 (2004), hep-th/0407277.
- N. Beisert and M. Staudacher, “Long-range psu(2,2///4) Bethe Ansatze for gauge theory and strings”, Nucl. Phys. B 727, 1 (2005), hep-th/0504190.
- N. Beisert, “The Analytic Bethe Ansatz for a Chain with Centrally Extended su(2///2) Symmetry”, J. Stat. Mech. 0701, P01017 (2007), nlin/0610017.
- N. Beisert, “The SU(2///2) dynamic S-matrix”, Adv. Theor. Math. Phys. 12, 945 (2008), hep-th/0511082.
- R. A. Janik, “The AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring worldsheet S-matrix and crossing symmetry”, Phys. Rev. D 73, 086006 (2006), hep-th/0603038.
- R. Hernández and E. López, “Quantum corrections to the string Bethe ansatz”, JHEP 0607, 004 (2006), hep-th/0603204.
- G. Arutyunov and S. Frolov, “On AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT String S-matrix”, Phys. Lett. B 639, 378 (2006), hep-th/0604043.
- N. Beisert, R. Hernández and E. López, “A Crossing-symmetric phase for AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT strings”, JHEP 0611, 070 (2006), hep-th/0609044.
- N. Beisert, B. Eden and M. Staudacher, “Transcendentality and Crossing”, J. Stat. Mech. 0701, P01021 (2007), hep-th/0610251.
- N. Dorey, D. M. Hofman and J. M. Maldacena, “On the Singularities of the Magnon S-matrix”, Phys. Rev. D 76, 025011 (2007), hep-th/0703104.
- I. Bena, J. Polchinski and R. Roiban, “Hidden symmetries of the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring”, Phys. Rev. D 69, 046002 (2004), hep-th/0305116.
- G. Arutyunov, S. Frolov and M. Staudacher, “Bethe ansatz for quantum strings”, JHEP 0410, 016 (2004), hep-th/0406256.
- G. Arutyunov and S. Frolov, “Foundations of the AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Superstring. Part I”, J. Phys. A 42, 254003 (2009), arxiv:0901.4937.
- S. Frolov, J. Plefka and M. Zamaklar, “The AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring in light-cone gauge and its Bethe equations”, J. Phys. A 39, 13037 (2006), hep-th/0603008.
- G. Arutyunov and S. Frolov, “Integrable Hamiltonian for classical strings on AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 0502, 059 (2005), hep-th/0411089.
- G. Arutyunov, S. Frolov, J. Plefka and M. Zamaklar, “The Off-shell Symmetry Algebra of the Light-cone AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, J. Phys. A 40, 3583 (2007), hep-th/0609157.
- T. Klose, T. McLoughlin, R. Roiban and K. Zarembo, “Worldsheet scattering in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 0703, 094 (2007), hep-th/0611169.
- R. Roiban, A. Tirziu and A. A. Tseytlin, “Two-loop world-sheet corrections in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring”, JHEP 0707, 056 (2007), arxiv:0704.3638.
- T. Klose, T. McLoughlin, J. A. Minahan and K. Zarembo, “World-sheet scattering in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT at two loops”, JHEP 0708, 051 (2007), arxiv:0704.3891.
- G. Arutyunov and S. Frolov, “On String S-matrix, Bound States and TBA”, JHEP 0712, 024 (2007), arxiv:0710.1568.
- G. Arutyunov and S. Frolov, “Thermodynamic Bethe Ansatz for the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT Mirror Model”, JHEP 0905, 068 (2009), arxiv:0903.0141.
- D. Bombardelli, D. Fioravanti and R. Tateo, “Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal”, J. Phys. A 42, 375401 (2009), arxiv:0902.3930.
- N. Gromov, V. Kazakov, A. Kozak and P. Vieira, “Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited states”, Lett. Math. Phys. 91, 265 (2010), arxiv:0902.4458.
- N. Gromov, V. Kazakov, S. Leurent and D. Volin, “Quantum Spectral Curve for Planar N = 4 Super-Yang-Mills Theory”, Phys. Rev. Lett. 112, 011602 (2014), arxiv:1305.1939.
- N. Gromov, V. Kazakov, S. Leurent and D. Volin, “Quantum spectral curve for arbitrary state/operator in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT/CFT44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT”, JHEP 1509, 187 (2015), arxiv:1405.4857.
- F. Levkovich-Maslyuk, “A review of the AdS/CFT Quantum Spectral Curve”, J. Phys. A 53, 283004 (2020), arxiv:1911.13065.
- N. Gromov, “Introduction to the Spectrum of N = 4 SYM and the Quantum Spectral Curve”, arxiv:1708.03648.
- V. G. Drinfel’d, “Quantum groups”, J. Sov. Math. 41, 898 (1988).
- V. Chari and A. Pressley, “A guide to quantum groups”, Cambridge University Press (1994), Cambridge, UK.
- V. G. Drinfel’d, “Hopf algebras and the quantum Yang–Baxter equation”, Sov. Math. Dokl. 32, 254 (1985).
- L. Dolan, C. R. Nappi and E. Witten, “Yangian symmetry in D = 4 superconformal Yang-Mills theory”, hep-th/0401243, in: “3rd International Symposium on Quantum Theory and Symmetries”, pp. 300–315.
- N. Beisert, “The S-matrix of AdS/CFT and Yangian symmetry”, PoS SOLVAY, 002 (2006), arxiv:0704.0400.
- C. Gómez and R. Hernández, “The Magnon kinematics of the AdS/CFT correspondence”, JHEP 0611, 021 (2006), hep-th/0608029.
- J. Plefka, F. Spill and A. Torrielli, “On the Hopf algebra structure of the AdS/CFT S-matrix”, Phys. Rev. D 74, 066008 (2006), hep-th/0608038.
- T. Matsumoto and A. Molev, “Representations of centrally extended Lie superalgebra psl(2///2)”, J. Math. Phys. 55, 091704 (2014), arxiv:1405.3420.
- N. Dorey, “Magnon Bound States and the AdS/CFT Correspondence”, J. Phys. A 39, 13119 (2006), hep-th/0604175.
- H.-Y. Chen, N. Dorey and K. Okamura, “On the scattering of magnon boundstates”, JHEP 0611, 035 (2006), hep-th/0608047.
- H.-Y. Chen, N. Dorey and K. Okamura, “The Asymptotic spectrum of the N = 4 super Yang-Mills spin chain”, JHEP 0703, 005 (2007), hep-th/0610295.
- M. de Leeuw, “Bound States, Yangian Symmetry and Classical r-matrix for the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, JHEP 0806, 085 (2008), arxiv:0804.1047.
- G. Arutyunov and S. Frolov, “The S-matrix of String Bound States”, Nucl. Phys. B 804, 90 (2008), arxiv:0803.4323.
- G. Arutyunov, M. de Leeuw and A. Torrielli, “The Bound State S-Matrix for AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, Nucl. Phys. B 819, 319 (2009), arxiv:0902.0183.
- N. Beisert, A. Garus and M. Rosso, “Yangian Symmetry and Integrability of Planar N = 4 Supersymmetric Yang-Mills Theory”, Phys. Rev. Lett. 118, 141603 (2017), arxiv:1701.09162.
- N. Beisert, A. Garus and M. Rosso, “Yangian Symmetry for the Action of Planar N = 4 Super Yang-Mills and N = 6 Super Chern-Simons Theories”, Phys. Rev. D 98, 046006 (2018), arxiv:1803.06310.
- J. M. Drummond, J. M. Henn and J. Plefka, “Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory”, JHEP 0905, 046 (2009), arxiv:0902.2987.
- F. Spill and A. Torrielli, “On Drinfeld’s second realization of the AdS/CFT su(2///2) Yangian”, J. Geom. Phys. 59, 489 (2009), arxiv:0803.3194.
- N. Beisert and M. de Leeuw, “The RTT realization for the deformed gl(2///2) Yangian”, J. Phys. A 47, 305201 (2014), arxiv:1401.7691.
- T. Matsumoto, “Drinfeld realization of the centrally extended psl(2///2) Yangian algebra with the manifest coproducts”, J. Math. Phys. 64, 041704 (2023), arxiv:2208.11889.
- T. Matsumoto, S. Moriyama and A. Torrielli, “A Secret Symmetry of the AdS/CFT S-matrix”, JHEP 0709, 099 (2007), arxiv:0708.1285.
- M. de Leeuw, T. Matsumoto, S. Moriyama, V. Regelskis and A. Torrielli, “Secret Symmetries in AdS/CFT”, Phys. Scripta 02, 028502 (2012), arxiv:1204.2366.
- C. A. S. Young, “q-deformed supersymmetry and dynamic magnon representations”, J. Phys. A 40, 9165 (2007), arxiv:0704.2069.
- R. Borsato and A. Torrielli, “q𝑞qitalic_q-Poincaré supersymmetry in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT / CFT44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT”, Nucl. Phys. B 928, 321 (2018), arxiv:1706.10265.
- J. Hubbard, “Electron Correlations in Narrow Energy Bands”, Proc. R. Soc. London A 276, 238 (1963), http://www.jstor.org/stable/2414761.
- F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper and V. E. Korepin, “The one-dimensional Hubbard model”, Cambridge University Press (2005), Cambridge, UK.
- B. S. Shastry, “Exact Integrability of the One-Dimensional Hubbard Model”, Phys. Rev. Lett. 56, 2453 (1986).
- S. Moriyama and A. Torrielli, “A Yangian double for the AdS/CFT classical r-matrix”, JHEP 0706, 083 (2007), arxiv:0706.0884.
- A. Torrielli, “Classical r-matrix of the su(2///2) SYM spin-chain”, Phys. Rev. D 75, 105020 (2007), hep-th/0701281.
- N. Beisert and F. Spill, “The Classical r-matrix of AdS/CFT and its Lie Bialgebra Structure”, Commun. Math. Phys. 285, 537 (2009), arxiv:0708.1762.
- N. Beisert and E. Im, “Classical Lie Bialgebras for AdS/CFT Integrability by Contraction and Reduction”, SciPost Phys. 14, 157 (2023), arxiv:2210.11150.
- J. Van der Jeugt, “Irreducible representations of the exceptional Lie superalgebras D(2,1;α𝛼\alphaitalic_α)”, J. Math. Phys. 26, 913 (1985).
- T. Matsumoto and S. Moriyama, “An Exceptional Algebraic Origin of the AdS/CFT Yangian Symmetry”, JHEP 0804, 022 (2008), arxiv:0803.1212.
- N. Beisert, W. Galleas and T. Matsumoto, “A Quantum Affine Algebra for the Deformed Hubbard Chain”, J. Phys. A 45, 365206 (2012), arxiv:1102.5700.
- N. Beisert, M. de Leeuw and R. Hecht, “Maximally extended sl(2///2) as a quantum double”, J. Phys. A 49, 434005 (2016), arxiv:1602.04988.
- N. Beisert, R. Hecht and B. Hoare, “Maximally extended sl(2///2), q-deformed d(2,1;ϵitalic-ϵ\epsilonitalic_ϵ) and 3D kappa-Poincaré”, J. Phys. A 50, 314003 (2017), arxiv:1704.05093.
- M. de Leeuw, V. Regelskis and A. Torrielli, “The Quantum Affine Origin of the AdS/CFT Secret Symmetry”, J. Phys. A 45, 175202 (2012), arxiv:1112.4989.
- N. Beisert and P. Koroteev, “Quantum Deformations of the One-Dimensional Hubbard Model”, J. Phys. A 41, 255204 (2008), arxiv:0802.0777.
- N. Beisert, “The Classical Trigonometric r-Matrix for the Quantum-Deformed Hubbard Chain”, J. Phys. A 44, 265202 (2011), arxiv:1002.1097.
- F. Delduc, M. Magro and B. Vicedo, “An integrable deformation of the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring action”, Phys. Rev. Lett. 112, 051601 (2014), arxiv:1309.5850.
- F. Delduc, M. Magro and B. Vicedo, “Derivation of the action and symmetries of the q-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring”, JHEP 1410, 132 (2014), arxiv:1406.6286.
- F. K. Seibold, S. J. Van Tongeren and Y. Zimmermann, “The twisted story of worldsheet scattering in η𝜂\etaitalic_η-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 2012, 043 (2020), arxiv:2007.09136.
- G. Arutyunov, R. Borsato and S. Frolov, “S-matrix for strings on η𝜂\etaitalic_η-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 1404, 002 (2014), arxiv:1312.3542.
- V. G. Drinfel’d and A. A. Belavin, “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Func. Anal. Appl. 16, 159 (1982).
- R. Abedin, “Geometrization of solutions of the generalized classical Yang-Baxter equation and a new proof of the Belavin-Drinfeld trichotomy”, arxiv:2107.10722.
- A. Stolin, “On Rational Solutions of Yang-Baxter Equation for 𝔰𝔩(n)𝔰𝔩𝑛\mathfrak{sl}(n)fraktur_s fraktur_l ( italic_n )”, Math. Scand. 69, 57 (1991), http://www.jstor.org/stable/24492600.
- M. Bremner, “Generalized Affine Kac-Moody Lie Algebras Over Localizations of the Polynomial Ring in One Variable”, Canadian Mathematical Bulletin 37, 21–28 (1994).
- M. Bremner, “Four-Point Affine Lie Algebras”, Proc. Am. Math. Soc. 123, 1981 (1995).
- B. Hartwig and P. Terwilliger, “The Tetrahedron algebra, the Onsager algebra, and the sl22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT loop algebra”, J. Alg. 308, 840 (2007), arxiv:0511004.
- V. N. Tolstoy and S. M. Khoroshkin, “Universal R𝑅Ritalic_R-matrix for quantized nontwisted affine Lie algebras”, Funktsional’nyi Analiz i ego Prilozheniya 26, 85 (1992).
- I. Heckenberger, F. Spill, A. Torrielli and H. Yamane, “Drinfeld second realization of the quantum affine superalgebras of D(1)(2,1;x) via the Weyl groupoid”, Publ. Res. Inst. Math. Sci. Kyoto B 8, 171 (2008), arxiv:0705.1071.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.