Papers
Topics
Authors
Recent
2000 character limit reached

Affine Classical Lie Bialgebras for AdS/CFT Integrability (2401.10327v1)

Published 18 Jan 2024 in hep-th, math-ph, math.MP, and math.QA

Abstract: In this article we continue the classical analysis of the symmetry algebra underlying the integrability of the spectrum in the AdS_5/CFT_4 and in the Hubbard model. We extend the construction of the quasi-triangular Lie bialgebra gl(2|2) by contraction and reduction studied in the earlier work to the case of the affine algebra sl(2)1 times d(2,1;alpha)1. The reduced affine derivation naturally measures the deviation of the classical r-matrix from the difference form. Moreover, it implements a Lorentz boost symmetry, originally suggested to be related to a q-deformed 2D Poincare algebra. We also discuss the classical double construction for the bialgebra of interest and comment on the representation of the affine structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (87)
  1. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200.
  2. R. R. Metsaev and A. A. Tseytlin, “Type IIB superstring action in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT background”, Nucl. Phys. B 533, 109 (1998), hep-th/9805028.
  3. L. Brink, J. H. Schwarz and J. Scherk, “Supersymmetric Yang-Mills Theories”, Nucl. Phys. B 121, 77 (1977).
  4. N. Beisert et al., “Review of AdS/CFT Integrability: An Overview”, Lett. Math. Phys. 99, 3 (2012), arxiv:1012.3982.
  5. D. Bombardelli et al., “An integrability primer for the gauge-gravity correspondence: An introduction”, J. Phys. A 49, 320301 (2016), arxiv:1606.02945.
  6. J. A. Minahan and K. Zarembo, “The Bethe ansatz for N = 4 superYang-Mills”, JHEP 0303, 013 (2003), hep-th/0212208.
  7. N. Beisert, C. Kristjansen and M. Staudacher, “The Dilatation operator of conformal N = 4 superYang-Mills theory”, Nucl. Phys. B 664, 131 (2003), hep-th/0303060.
  8. N. Beisert and M. Staudacher, “The N = 4 SYM integrable super spin chain”, Nucl. Phys. B 670, 439 (2003), hep-th/0307042.
  9. N. Beisert, “The su(2///3) dynamic spin chain”, Nucl. Phys. B 682, 487 (2004), hep-th/0310252.
  10. N. Beisert, “The Dilatation operator of N = 4 super Yang-Mills theory and integrability”, Phys. Rept. 405, 1 (2004), hep-th/0407277.
  11. N. Beisert and M. Staudacher, “Long-range psu(2,2///4) Bethe Ansatze for gauge theory and strings”, Nucl. Phys. B 727, 1 (2005), hep-th/0504190.
  12. N. Beisert, “The Analytic Bethe Ansatz for a Chain with Centrally Extended su(2///2) Symmetry”, J. Stat. Mech. 0701, P01017 (2007), nlin/0610017.
  13. N. Beisert, “The SU(2///2) dynamic S-matrix”, Adv. Theor. Math. Phys. 12, 945 (2008), hep-th/0511082.
  14. R. A. Janik, “The AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring worldsheet S-matrix and crossing symmetry”, Phys. Rev. D 73, 086006 (2006), hep-th/0603038.
  15. R. Hernández and E. López, “Quantum corrections to the string Bethe ansatz”, JHEP 0607, 004 (2006), hep-th/0603204.
  16. G. Arutyunov and S. Frolov, “On AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT String S-matrix”, Phys. Lett. B 639, 378 (2006), hep-th/0604043.
  17. N. Beisert, R. Hernández and E. López, “A Crossing-symmetric phase for AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT strings”, JHEP 0611, 070 (2006), hep-th/0609044.
  18. N. Beisert, B. Eden and M. Staudacher, “Transcendentality and Crossing”, J. Stat. Mech. 0701, P01021 (2007), hep-th/0610251.
  19. N. Dorey, D. M. Hofman and J. M. Maldacena, “On the Singularities of the Magnon S-matrix”, Phys. Rev. D 76, 025011 (2007), hep-th/0703104.
  20. I. Bena, J. Polchinski and R. Roiban, “Hidden symmetries of the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring”, Phys. Rev. D 69, 046002 (2004), hep-th/0305116.
  21. G. Arutyunov, S. Frolov and M. Staudacher, “Bethe ansatz for quantum strings”, JHEP 0410, 016 (2004), hep-th/0406256.
  22. G. Arutyunov and S. Frolov, “Foundations of the AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Superstring. Part I”, J. Phys. A 42, 254003 (2009), arxiv:0901.4937.
  23. S. Frolov, J. Plefka and M. Zamaklar, “The AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring in light-cone gauge and its Bethe equations”, J. Phys. A 39, 13037 (2006), hep-th/0603008.
  24. G. Arutyunov and S. Frolov, “Integrable Hamiltonian for classical strings on AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 0502, 059 (2005), hep-th/0411089.
  25. G. Arutyunov, S. Frolov, J. Plefka and M. Zamaklar, “The Off-shell Symmetry Algebra of the Light-cone AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, J. Phys. A 40, 3583 (2007), hep-th/0609157.
  26. T. Klose, T. McLoughlin, R. Roiban and K. Zarembo, “Worldsheet scattering in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 0703, 094 (2007), hep-th/0611169.
  27. R. Roiban, A. Tirziu and A. A. Tseytlin, “Two-loop world-sheet corrections in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring”, JHEP 0707, 056 (2007), arxiv:0704.3638.
  28. T. Klose, T. McLoughlin, J. A. Minahan and K. Zarembo, “World-sheet scattering in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT at two loops”, JHEP 0708, 051 (2007), arxiv:0704.3891.
  29. G. Arutyunov and S. Frolov, “On String S-matrix, Bound States and TBA”, JHEP 0712, 024 (2007), arxiv:0710.1568.
  30. G. Arutyunov and S. Frolov, “Thermodynamic Bethe Ansatz for the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT Mirror Model”, JHEP 0905, 068 (2009), arxiv:0903.0141.
  31. D. Bombardelli, D. Fioravanti and R. Tateo, “Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal”, J. Phys. A 42, 375401 (2009), arxiv:0902.3930.
  32. N. Gromov, V. Kazakov, A. Kozak and P. Vieira, “Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited states”, Lett. Math. Phys. 91, 265 (2010), arxiv:0902.4458.
  33. N. Gromov, V. Kazakov, S. Leurent and D. Volin, “Quantum Spectral Curve for Planar N = 4 Super-Yang-Mills Theory”, Phys. Rev. Lett. 112, 011602 (2014), arxiv:1305.1939.
  34. N. Gromov, V. Kazakov, S. Leurent and D. Volin, “Quantum spectral curve for arbitrary state/operator in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT/CFT44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT”, JHEP 1509, 187 (2015), arxiv:1405.4857.
  35. F. Levkovich-Maslyuk, “A review of the AdS/CFT Quantum Spectral Curve”, J. Phys. A 53, 283004 (2020), arxiv:1911.13065.
  36. N. Gromov, “Introduction to the Spectrum of N = 4 SYM and the Quantum Spectral Curve”, arxiv:1708.03648.
  37. V. G. Drinfel’d, “Quantum groups”, J. Sov. Math. 41, 898 (1988).
  38. V. Chari and A. Pressley, “A guide to quantum groups”, Cambridge University Press (1994), Cambridge, UK.
  39. V. G. Drinfel’d, “Hopf algebras and the quantum Yang–Baxter equation”, Sov. Math. Dokl. 32, 254 (1985).
  40. L. Dolan, C. R. Nappi and E. Witten, “Yangian symmetry in D = 4 superconformal Yang-Mills theory”, hep-th/0401243, in: “3rd International Symposium on Quantum Theory and Symmetries”, pp. 300–315.
  41. N. Beisert, “The S-matrix of AdS/CFT and Yangian symmetry”, PoS SOLVAY, 002 (2006), arxiv:0704.0400.
  42. C. Gómez and R. Hernández, “The Magnon kinematics of the AdS/CFT correspondence”, JHEP 0611, 021 (2006), hep-th/0608029.
  43. J. Plefka, F. Spill and A. Torrielli, “On the Hopf algebra structure of the AdS/CFT S-matrix”, Phys. Rev. D 74, 066008 (2006), hep-th/0608038.
  44. T. Matsumoto and A. Molev, “Representations of centrally extended Lie superalgebra psl(2///2)”, J. Math. Phys. 55, 091704 (2014), arxiv:1405.3420.
  45. N. Dorey, “Magnon Bound States and the AdS/CFT Correspondence”, J. Phys. A 39, 13119 (2006), hep-th/0604175.
  46. H.-Y. Chen, N. Dorey and K. Okamura, “On the scattering of magnon boundstates”, JHEP 0611, 035 (2006), hep-th/0608047.
  47. H.-Y. Chen, N. Dorey and K. Okamura, “The Asymptotic spectrum of the N = 4 super Yang-Mills spin chain”, JHEP 0703, 005 (2007), hep-th/0610295.
  48. M. de Leeuw, “Bound States, Yangian Symmetry and Classical r-matrix for the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, JHEP 0806, 085 (2008), arxiv:0804.1047.
  49. G. Arutyunov and S. Frolov, “The S-matrix of String Bound States”, Nucl. Phys. B 804, 90 (2008), arxiv:0803.4323.
  50. G. Arutyunov, M. de Leeuw and A. Torrielli, “The Bound State S-Matrix for AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, Nucl. Phys. B 819, 319 (2009), arxiv:0902.0183.
  51. N. Beisert, A. Garus and M. Rosso, “Yangian Symmetry and Integrability of Planar N = 4 Supersymmetric Yang-Mills Theory”, Phys. Rev. Lett. 118, 141603 (2017), arxiv:1701.09162.
  52. N. Beisert, A. Garus and M. Rosso, “Yangian Symmetry for the Action of Planar N = 4 Super Yang-Mills and N = 6 Super Chern-Simons Theories”, Phys. Rev. D 98, 046006 (2018), arxiv:1803.06310.
  53. J. M. Drummond, J. M. Henn and J. Plefka, “Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory”, JHEP 0905, 046 (2009), arxiv:0902.2987.
  54. F. Spill and A. Torrielli, “On Drinfeld’s second realization of the AdS/CFT su(2///2) Yangian”, J. Geom. Phys. 59, 489 (2009), arxiv:0803.3194.
  55. N. Beisert and M. de Leeuw, “The RTT realization for the deformed gl(2///2) Yangian”, J. Phys. A 47, 305201 (2014), arxiv:1401.7691.
  56. T. Matsumoto, “Drinfeld realization of the centrally extended psl(2///2) Yangian algebra with the manifest coproducts”, J. Math. Phys. 64, 041704 (2023), arxiv:2208.11889.
  57. T. Matsumoto, S. Moriyama and A. Torrielli, “A Secret Symmetry of the AdS/CFT S-matrix”, JHEP 0709, 099 (2007), arxiv:0708.1285.
  58. M. de Leeuw, T. Matsumoto, S. Moriyama, V. Regelskis and A. Torrielli, “Secret Symmetries in AdS/CFT”, Phys. Scripta 02, 028502 (2012), arxiv:1204.2366.
  59. C. A. S. Young, “q-deformed supersymmetry and dynamic magnon representations”, J. Phys. A 40, 9165 (2007), arxiv:0704.2069.
  60. R. Borsato and A. Torrielli, “q𝑞qitalic_q-Poincaré supersymmetry in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT / CFT44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT”, Nucl. Phys. B 928, 321 (2018), arxiv:1706.10265.
  61. J. Hubbard, “Electron Correlations in Narrow Energy Bands”, Proc. R. Soc. London A 276, 238 (1963), http://www.jstor.org/stable/2414761.
  62. F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper and V. E. Korepin, “The one-dimensional Hubbard model”, Cambridge University Press (2005), Cambridge, UK.
  63. B. S. Shastry, “Exact Integrability of the One-Dimensional Hubbard Model”, Phys. Rev. Lett. 56, 2453 (1986).
  64. S. Moriyama and A. Torrielli, “A Yangian double for the AdS/CFT classical r-matrix”, JHEP 0706, 083 (2007), arxiv:0706.0884.
  65. A. Torrielli, “Classical r-matrix of the su(2///2) SYM spin-chain”, Phys. Rev. D 75, 105020 (2007), hep-th/0701281.
  66. N. Beisert and F. Spill, “The Classical r-matrix of AdS/CFT and its Lie Bialgebra Structure”, Commun. Math. Phys. 285, 537 (2009), arxiv:0708.1762.
  67. N. Beisert and E. Im, “Classical Lie Bialgebras for AdS/CFT Integrability by Contraction and Reduction”, SciPost Phys. 14, 157 (2023), arxiv:2210.11150.
  68. J. Van der Jeugt, “Irreducible representations of the exceptional Lie superalgebras D(2,1;α𝛼\alphaitalic_α)”, J. Math. Phys. 26, 913 (1985).
  69. T. Matsumoto and S. Moriyama, “An Exceptional Algebraic Origin of the AdS/CFT Yangian Symmetry”, JHEP 0804, 022 (2008), arxiv:0803.1212.
  70. N. Beisert, W. Galleas and T. Matsumoto, “A Quantum Affine Algebra for the Deformed Hubbard Chain”, J. Phys. A 45, 365206 (2012), arxiv:1102.5700.
  71. N. Beisert, M. de Leeuw and R. Hecht, “Maximally extended sl(2///2) as a quantum double”, J. Phys. A 49, 434005 (2016), arxiv:1602.04988.
  72. N. Beisert, R. Hecht and B. Hoare, “Maximally extended sl(2///2), q-deformed d(2,1;ϵitalic-ϵ\epsilonitalic_ϵ) and 3D kappa-Poincaré”, J. Phys. A 50, 314003 (2017), arxiv:1704.05093.
  73. M. de Leeuw, V. Regelskis and A. Torrielli, “The Quantum Affine Origin of the AdS/CFT Secret Symmetry”, J. Phys. A 45, 175202 (2012), arxiv:1112.4989.
  74. N. Beisert and P. Koroteev, “Quantum Deformations of the One-Dimensional Hubbard Model”, J. Phys. A 41, 255204 (2008), arxiv:0802.0777.
  75. N. Beisert, “The Classical Trigonometric r-Matrix for the Quantum-Deformed Hubbard Chain”, J. Phys. A 44, 265202 (2011), arxiv:1002.1097.
  76. F. Delduc, M. Magro and B. Vicedo, “An integrable deformation of the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring action”, Phys. Rev. Lett. 112, 051601 (2014), arxiv:1309.5850.
  77. F. Delduc, M. Magro and B. Vicedo, “Derivation of the action and symmetries of the q-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring”, JHEP 1410, 132 (2014), arxiv:1406.6286.
  78. F. K. Seibold, S. J. Van Tongeren and Y. Zimmermann, “The twisted story of worldsheet scattering in η𝜂\etaitalic_η-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 2012, 043 (2020), arxiv:2007.09136.
  79. G. Arutyunov, R. Borsato and S. Frolov, “S-matrix for strings on η𝜂\etaitalic_η-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 1404, 002 (2014), arxiv:1312.3542.
  80. V. G. Drinfel’d and A. A. Belavin, “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Func. Anal. Appl. 16, 159 (1982).
  81. R. Abedin, “Geometrization of solutions of the generalized classical Yang-Baxter equation and a new proof of the Belavin-Drinfeld trichotomy”, arxiv:2107.10722.
  82. A. Stolin, “On Rational Solutions of Yang-Baxter Equation for 𝔰⁢𝔩⁢(n)𝔰𝔩𝑛\mathfrak{sl}(n)fraktur_s fraktur_l ( italic_n )”, Math. Scand. 69, 57 (1991), http://www.jstor.org/stable/24492600.
  83. M. Bremner, “Generalized Affine Kac-Moody Lie Algebras Over Localizations of the Polynomial Ring in One Variable”, Canadian Mathematical Bulletin 37, 21–28 (1994).
  84. M. Bremner, “Four-Point Affine Lie Algebras”, Proc. Am. Math. Soc. 123, 1981 (1995).
  85. B. Hartwig and P. Terwilliger, “The Tetrahedron algebra, the Onsager algebra, and the sl22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT loop algebra”, J. Alg. 308, 840 (2007), arxiv:0511004.
  86. V. N. Tolstoy and S. M. Khoroshkin, “Universal R𝑅Ritalic_R-matrix for quantized nontwisted affine Lie algebras”, Funktsional’nyi Analiz i ego Prilozheniya 26, 85 (1992).
  87. I. Heckenberger, F. Spill, A. Torrielli and H. Yamane, “Drinfeld second realization of the quantum affine superalgebras of D(1)(2,1;x) via the Weyl groupoid”, Publ. Res. Inst. Math. Sci. Kyoto B 8, 171 (2008), arxiv:0705.1071.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.