Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving automatic detection of driver fatigue and distraction using machine learning (2401.10213v1)

Published 4 Jan 2024 in cs.CV, cs.CY, and cs.LG

Abstract: Changes and advances in information technology have played an important role in the development of intelligent vehicle systems in recent years. Driver fatigue and distracted driving are important factors in traffic accidents. Thus, onboard monitoring of driving behavior has become a crucial component of advanced driver assistance systems for intelligent vehicles. In this article, we present techniques for simultaneously detecting fatigue and distracted driving behaviors using vision-based and machine learning-based approaches. In driving fatigue detection, we use facial alignment networks to identify facial feature points in the images, and calculate the distance of the facial feature points to detect the opening and closing of the eyes and mouth. Furthermore, we use a convolutional neural network (CNN) based on the MobileNet architecture to identify various distracted driving behaviors. Experiments are performed on a PC based setup with a webcam and results are demonstrated using public datasets as well as custom datasets created for training and testing. Compared to previous approaches, we build our own datasets and provide better results in terms of accuracy and computation time.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets