Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

One-loop partition functions in $T\overline{T}$-deformed AdS$_3$ (2401.09879v3)

Published 18 Jan 2024 in hep-th and gr-qc

Abstract: We study the geometry of $T\bar{T}$-deformed BTZ black hole and find it can be regarded as a quotient of hyperbolic space. We then consider the massive scalar field propagating in the $T\bar{T}$-deformed BTZ black hole background. The one-loop partition function of scalar field is calculated using the heat kernel method and the Wilson spool proposal. These two methods give consistent result which implies the Wilson spool proposal still holds under $T\bar{T}$ deformation. Moreover, we also calculate the one-loop partition function of graviton in $T\bar{T}$-deformed BTZ black hole. We find the deformed one-loop partition functions are modified in a simple way, which corresponds to a replacement of the modular parameter. The result precisely matches the large $c$ expansion of $T\bar{T}$-deformed CFT partition function. These results provide a further check about the correspondence between $T\bar{T}$-deformed CFT$_2$ and AdS$_3$ with mixed boundary condition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B 915 (2017) 363–383, arXiv:1608.05499 [hep-th].
  2. A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016) 112, arXiv:1608.05534 [hep-th].
  3. G. Bonelli, N. Doroud, and M. Zhu, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformations in closed form,” JHEP 06 (2018) 149, arXiv:1804.10967 [hep-th].
  4. S. Datta and Y. Jiang, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions,” JHEP 08 (2018) 106, arXiv:1806.07426 [hep-th].
  5. S. Dubovsky, V. Gorbenko, and G. Hernández-Chifflet, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity,” JHEP 09 (2018) 158, arXiv:1805.07386 [hep-th].
  6. S. Chakraborty, A. Giveon, N. Itzhaki, and D. Kutasov, “Entanglement beyond AdS,” Nucl. Phys. B 935 (2018) 290–309, arXiv:1805.06286 [hep-th].
  7. M. Asrat, A. Giveon, N. Itzhaki, and D. Kutasov, “Holography Beyond AdS,” Nucl. Phys. B 932 (2018) 241–253, arXiv:1711.02690 [hep-th].
  8. A. Giveon, N. Itzhaki, and D. Kutasov, “T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG and LST,” JHEP 07 (2017) 122, arXiv:1701.05576 [hep-th].
  9. L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].
  10. P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07 (2018) 027, arXiv:1801.02714 [hep-th].
  11. J. Cardy, “The T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry,” JHEP 10 (2018) 186, arXiv:1801.06895 [hep-th].
  12. N. Callebaut, J. Kruthoff, and H. Verlinde, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT as a non-critical string,” JHEP 04 (2020) 084, arXiv:1910.13578 [hep-th].
  13. A. J. Tolley, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations, massive gravity and non-critical strings,” JHEP 06 (2020) 050, arXiv:1911.06142 [hep-th].
  14. M. Guica and R. Monten, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and the mirage of a bulk cutoff,” SciPost Phys. 10 no. 2, (2021) 024, arXiv:1906.11251 [hep-th].
  15. Y. Jiang, “A pedagogical review on solvable irrelevant deformations of 2D quantum field theory,” Commun. Theor. Phys. 73 no. 5, (2021) 057201, arXiv:1904.13376 [hep-th].
  16. R. Conti, S. Negro, and R. Tateo, “The T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation and its geometric interpretation,” JHEP 02 (2019) 085, arXiv:1809.09593 [hep-th].
  17. R. Conti, S. Negro, and R. Tateo, “Conserved currents and T⁢T¯sTsubscript¯T𝑠\text{T}\bar{\text{T}}_{s}T over¯ start_ARG T end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT irrelevant deformations of 2D integrable field theories,” JHEP 11 (2019) 120, arXiv:1904.09141 [hep-th].
  18. H. Ouyang and H. Shu, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation of chiral bosons and Chern–Simons AdS3subscriptAdS3\hbox{AdS}_{3}AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT gravity,” Eur. Phys. J. C 80 no. 12, (2020) 1155, arXiv:2006.10514 [hep-th].
  19. E. Llabrés, “General solutions in Chern-Simons gravity and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformations,” JHEP 01 (2021) 039, arXiv:1912.13330 [hep-th].
  20. M. He and Y.-h. Gao, “T⁢T¯/J⁢T¯𝑇¯𝑇𝐽¯𝑇T\bar{T}/J\bar{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed WZW models from Chern-Simons AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT gravity with mixed boundary conditions,” Phys. Rev. D 103 no. 12, (2021) 126019, arXiv:2012.05726 [hep-th].
  21. M. He, S. He, and Y.-h. Gao, “Surface charges in Chern-Simons gravity with T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 03 (2022) 044, arXiv:2109.12885 [hep-th].
  22. S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG in JT Gravity and BF Gauge Theory,” SciPost Phys. 13 no. 4, (2022) 096, arXiv:2205.07817 [hep-th].
  23. B. Chen, L. Chen, and P.-X. Hao, “Entanglement entropy in T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFT,” Phys. Rev. D 98 no. 8, (2018) 086025, arXiv:1807.08293 [hep-th].
  24. P. Caputa, S. Datta, Y. Jiang, and P. Kraus, “Geometrizing T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03 (2021) 140, arXiv:2011.04664 [hep-th]. [Erratum: JHEP 09, 110 (2022)].
  25. P. Kraus, R. Monten, and R. M. Myers, “3D Gravity in a Box,” SciPost Phys. 11 (2021) 070, arXiv:2103.13398 [hep-th].
  26. S. Ebert, E. Hijano, P. Kraus, R. Monten, and R. M. Myers, “Field Theory of Interacting Boundary Gravitons,” SciPost Phys. 13 no. 2, (2022) 038, arXiv:2201.01780 [hep-th].
  27. P. Kraus, R. Monten, and K. Roumpedakis, “Refining the cutoff 3d gravity/T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG correspondence,” JHEP 10 (2022) 094, arXiv:2206.00674 [hep-th].
  28. S. Hirano and M. Shigemori, “Random boundary geometry and gravity dual of T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 11 (2020) 108, arXiv:2003.06300 [hep-th].
  29. M. He and Y. Sun, “Holographic entanglement entropy in T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT,” Nucl. Phys. B 990 (2023) 116190, arXiv:2301.04435 [hep-th].
  30. D. Chen, X. Jiang, and H. Yang, “Holographic T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed entanglement entropy in dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” arXiv:2307.04673 [hep-th].
  31. J. Tian, “On-shell action of T⁢T¯T¯T\text{T}\bar{\text{T}}T over¯ start_ARG T end_ARG-deformed Holographic CFTs,” arXiv:2306.01258 [hep-th].
  32. R. Poddar, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations of holographic warped CFTs,” Phys. Rev. D 108 no. 10, (2023) 105016, arXiv:2305.15476 [hep-th].
  33. L. Apolo, P.-X. Hao, W.-X. Lai, and W. Song, “Glue-on AdS holography for T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 06 (2023) 117, arXiv:2303.04836 [hep-th].
  34. L. Apolo, P.-X. Hao, W.-X. Lai, and W. Song, “Extremal surfaces in glue-on AdS/T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG holography,” arXiv:2311.04883 [hep-th].
  35. M. Guica, “J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs as non-local CFTs,” arXiv:2110.07614 [hep-th].
  36. M. Guica, “On correlation functions in J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” J. Phys. A 52 no. 18, (2019) 184003, arXiv:1902.01434 [hep-th].
  37. S. He and H. Shu, “Correlation functions, entanglement and chaos in the T⁢T¯/J⁢T¯𝑇¯𝑇𝐽¯𝑇T\overline{T}/J\overline{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 02 (2020) 088, arXiv:1907.12603 [hep-th].
  38. S. He, “Note on higher-point correlation functions of the T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG or J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” Sci. China Phys. Mech. Astron. 64 no. 9, (2021) 291011, arXiv:2012.06202 [hep-th].
  39. S. He and Y. Sun, “Correlation functions of CFTs on a torus with a T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” Phys. Rev. D 102 no. 2, (2020) 026023, arXiv:2004.07486 [hep-th].
  40. S. He, Y. Sun, and Y.-X. Zhang, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-flow effects on torus partition functions,” JHEP 09 (2021) 061, arXiv:2011.02902 [hep-th].
  41. S. He, Y. Sun, and J. Yin, “A systematic approach to correlators in T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFTs,” arXiv:2310.20516 [hep-th].
  42. O. Aharony and T. Vaknin, “The TT* deformation at large central charge,” JHEP 05 (2018) 166, arXiv:1803.00100 [hep-th].
  43. M. Guica, “A definition of primary operators in J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” SciPost Phys. 13 no. 3, (2022) 045, arXiv:2112.14736 [hep-th].
  44. M. Guica, R. Monten, and I. Tsiares, “Classical and quantum symmetries of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” arXiv:2212.14014 [hep-th].
  45. S. Chakraborty, S. Georgescu, and M. Guica, “States, symmetries and correlators of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG symmetric orbifolds,” arXiv:2306.16454 [hep-th].
  46. W. Cui, H. Shu, W. Song, and J. Wang, “Correlation Functions in the TsT/T⁢T¯𝑇¯𝑇T{\bar{T}}italic_T over¯ start_ARG italic_T end_ARG Correspondence,” arXiv:2304.04684 [hep-th].
  47. O. Aharony and N. Barel, “Correlation functions in T⁢T¯T¯T\textrm{T}\overline{\textrm{T}}T over¯ start_ARG T end_ARG-deformed Conformal Field Theories,” JHEP 08 (2023) 035, arXiv:2304.14091 [hep-th].
  48. O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Completing the Bootstrap Program for T⁢T¯T¯T\mathrm{T}\bar{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-Deformed Massive Integrable Quantum Field Theories,” arXiv:2305.17068 [hep-th].
  49. O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Form factors and correlation functions of T⁢T¯T¯T\textrm{T}\overline{\textrm{T}}T over¯ start_ARG T end_ARG-deformed integrable quantum field theories,” JHEP 09 (2023) 048, arXiv:2306.01640 [hep-th].
  50. O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Entanglement entropy from form factors in T⁢T¯T¯T\textrm{T}\overline{\textrm{T}}T over¯ start_ARG T end_ARG-deformed integrable quantum field theories,” JHEP 11 (2023) 129, arXiv:2306.11064 [hep-th].
  51. J. Hou, M. He, and Y. Jiang, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed Entanglement Entropy for Integrable Quantum Field Theory,” arXiv:2306.07784 [hep-th].
  52. Y. Li and Y. Zhou, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in the large central charge sector: correlators of energy-momentum tensor,” JHEP 12 (2020) 168, arXiv:2005.01693 [hep-th].
  53. S. Hirano, T. Nakajima, and M. Shigemori, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation of stress-tensor correlators from random geometry,” JHEP 04 (2021) 270, arXiv:2012.03972 [hep-th].
  54. S. He, Y. Li, Y.-Z. Li, and Y. Zhang, “Holographic torus correlators of stress tensor in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 06 (2023) 116, arXiv:2303.13280 [hep-th].
  55. S. He, Y.-Z. Li, and Y. Zhang, “Holographic torus correlators in AdS3subscriptAdS3\text{AdS}_{3}AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT gravity coupled to scalar field,” arXiv:2311.09636 [hep-th].
  56. E. Witten, “Three-Dimensional Gravity Revisited,” arXiv:0706.3359 [hep-th].
  57. X. Yin, “Partition Functions of Three-Dimensional Pure Gravity,” Commun. Num. Theor. Phys. 2 (2008) 285–324, arXiv:0710.2129 [hep-th].
  58. A. Maloney and E. Witten, “Quantum Gravity Partition Functions in Three Dimensions,” JHEP 02 (2010) 029, arXiv:0712.0155 [hep-th].
  59. S. Giombi, A. Maloney, and X. Yin, “One-loop Partition Functions of 3D Gravity,” JHEP 08 (2008) 007, arXiv:0804.1773 [hep-th].
  60. J. R. David, M. R. Gaberdiel, and R. Gopakumar, “The Heat Kernel on AdS(3) and its Applications,” JHEP 04 (2010) 125, arXiv:0911.5085 [hep-th].
  61. R. B. Mann and S. N. Solodukhin, “Quantum scalar field on three-dimensional (BTZ) black hole instanton: Heat kernel, effective action and thermodynamics,” Phys. Rev. D 55 (1997) 3622–3632, arXiv:hep-th/9609085.
  62. D. Binosi, V. Moretti, L. Vanzo, and S. Zerbini, “Quantum scalar field on the massless (2+1)-dimensional black hole background,” Phys. Rev. D 59 (1999) 104017, arXiv:gr-qc/9809041.
  63. A. Castro, I. Coman, J. R. Fliss, and C. Zukowski, “Coupling Fields to 3D Quantum Gravity via Chern-Simons Theory,” Phys. Rev. Lett. 131 no. 17, (2023) 171602, arXiv:2304.02668 [hep-th].
  64. A. Castro, I. Coman, J. R. Fliss, and C. Zukowski, “Keeping matter in the loop in dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT quantum gravity,” JHEP 07 (2023) 120, arXiv:2302.12281 [hep-th].
  65. S. Datta and Y. Jiang, “Characters of irrelevant deformations,” JHEP 07 (2021) 162, arXiv:2104.00281 [hep-th].
  66. J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207–226.
  67. M. Banados, “Three-dimensional quantum geometry and black holes,” AIP Conf. Proc. 484 no. 1, (1999) 147–169, arXiv:hep-th/9901148.
  68. P. Kraus, “Lectures on black holes and the AdS(3) / CFT(2) correspondence,” Lect. Notes Phys. 755 (2008) 193–247, arXiv:hep-th/0609074.
  69. J. M. Maldacena and A. Strominger, “AdS(3) black holes and a stringy exclusion principle,” JHEP 12 (1998) 005, arXiv:hep-th/9804085.
  70. J. Cardy, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed modular forms,” Commun. Num. Theor. Phys. 16 no. 3, (2022) 435–457, arXiv:2201.00478 [math.NT].
  71. E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys. B 311 (1988) 46.
  72. S. M. Christensen and M. J. Duff, “Quantizing Gravity with a Cosmological Constant,” Nucl. Phys. B 170 (1980) 480–506.
  73. O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular invariance and uniqueness of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT,” JHEP 01 (2019) 086, arXiv:1808.02492 [hep-th].
  74. O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular covariance and uniqueness of J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” JHEP 01 (2019) 085, arXiv:1808.08978 [hep-th].
  75. B. Chen and J.-q. Wu, “1-loop partition function in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 12 (2015) 109, arXiv:1509.02062 [hep-th].

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.