Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

PixelDINO: Semi-Supervised Semantic Segmentation for Detecting Permafrost Disturbances (2401.09271v1)

Published 17 Jan 2024 in cs.CV

Abstract: Arctic Permafrost is facing significant changes due to global climate change. As these regions are largely inaccessible, remote sensing plays a crucial rule in better understanding the underlying processes not just on a local scale, but across the Arctic. In this study, we focus on the remote detection of retrogressive thaw slumps (RTS), a permafrost disturbance comparable to landslides induced by thawing. For such analyses from space, deep learning has become an indispensable tool, but limited labelled training data remains a challenge for training accurate models. To improve model generalization across the Arctic without the need for additional labelled data, we present a semi-supervised learning approach to train semantic segmentation models to detect RTS. Our framework called PixelDINO is trained in parallel on labelled data as well as unlabelled data. For the unlabelled data, the model segments the imagery into self-taught pseudo-classes and the training procedure ensures consistency of these pseudo-classes across strong augmentations of the input data. Our experimental results demonstrate that PixelDINO can improve model performance both over supervised baseline methods as well as existing semi-supervised semantic segmentation approaches, highlighting its potential for training robust models that generalize well to regions that were not included in the training data. The project page containing code and other materials for this study can be found at \url{https://khdlr.github.io/PixelDINO/}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. J. Hjort, D. Streletskiy, G. Doré, Q. Wu, K. Bjella, and M. Luoto, “Impacts of permafrost degradation on infrastructure,” Nature Reviews Earth & Environment, vol. 3, no. 1, pp. 24–38, Jan. 2022.
  2. E. a. G. Schuur, A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, C. C. Treat, and J. E. Vonk, “Climate change and the permafrost carbon feedback,” Nature, vol. 520, no. 7546, pp. 171–179, Apr. 2015.
  3. GCOS, “The Global Observing System for Climate: Implementation Needs,” Tech. Rep., 2016.
  4. J. Obu, “How Much of the Earth’s Surface is Underlain by Permafrost?” Journal of Geophysical Research: Earth Surface, vol. 126, no. 5, p. e2021JF006123, 2021.
  5. A. Bartsch, T. Strozzi, and I. Nitze, “Permafrost Monitoring from Space,” Surveys in Geophysics, Mar. 2023.
  6. I. Nitze, G. Grosse, B. M. Jones, V. E. Romanovsky, and J. Boike, “Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic,” Nature Communications, vol. 9, no. 1, pp. 1–11, Dec. 2018.
  7. I. Nitze, K. Heidler, S. Barth, and G. Grosse, “Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps,” Remote Sensing, vol. 13, no. 21, p. 4294, Oct. 2021.
  8. M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging Properties in Self-Supervised Vision Transformers,” arXiv:2104.14294 [cs], Apr. 2021.
  9. Brown, J. A. H. J., O. Ferrians, and E. Melnikov., “Circum-arctic map of permafrost and ground-ice conditions, version 2,” 2002.
  10. A. Brooker, R. H. Fraser, I. Olthof, S. V. Kokelj, and D. Lacelle, “Mapping the Activity and Evolution of Retrogressive Thaw Slumps by Tasselled Cap Trend Analysis of a Landsat Satellite Image Stack,” Permafrost and Periglacial Processes, vol. 25, no. 4, pp. 243–256, 2014.
  11. P. Bernhard, S. Zwieback, S. Leinss, and I. Hajnsek, “Mapping Retrogressive Thaw Slumps Using Single-Pass TanDEM-X Observations,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 3263–3280, 2020.
  12. R. A. Segal, T. C. Lantz, and S. V. Kokelj, “Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic,” Environmental Research Letters, vol. 11, no. 3, p. 034025, Mar. 2016.
  13. M. Leibman, N. Nesterova, and M. Altukhov, “Distribution and Morphometry of Thermocirques in the North of West Siberia, Russia,” Geosciences, vol. 13, no. 6, p. 167, Jun. 2023.
  14. T. Rettelbach, M. Langer, I. Nitze, B. Jones, V. Helm, J.-C. Freytag, and G. Grosse, “A Quantitative Graph-Based Approach to Monitoring Ice-Wedge Trough Dynamics in Polygonal Permafrost Landscapes,” Remote Sensing, vol. 13, no. 16, p. 3098, Jan. 2021.
  15. L. Huang, L. Liu, L. Jiang, and T. Zhang, “Automatic Mapping of Thermokarst Landforms from Remote Sensing Images Using Deep Learning: A Case Study in the Northeastern Tibetan Plateau,” Remote Sensing, vol. 10, no. 12, p. 2067, Dec. 2018.
  16. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, Apr. 2018.
  17. L. Huang, T. C. Lantz, R. H. Fraser, K. F. Tiampo, M. J. Willis, and K. Schaefer, “Accuracy, Efficiency, and Transferability of a Deep Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic,” Remote Sensing, vol. 14, no. 12, p. 2747, Jan. 2022.
  18. L. Huang, J. Luo, Z. Lin, F. Niu, and L. Liu, “Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images,” Remote Sensing of Environment, vol. 237, p. 111534, Feb. 2020.
  19. Y. Yang, B. M. Rogers, G. Fiske, J. Watts, S. Potter, T. Windholz, A. Mullen, I. Nitze, and S. M. Natali, “Mapping retrogressive thaw slumps using deep neural networks,” Remote Sensing of Environment, vol. 288, p. 113495, Apr. 2023.
  20. L. Hughes-Allen, F. Bouchard, A. Séjourné, G. Fougeron, and E. Léger, “Automated Identification of Thermokarst Lakes Using Machine Learning in the Ice-Rich Permafrost Landscape of Central Yakutia (Eastern Siberia),” Remote Sensing, vol. 15, no. 5, p. 1226, Jan. 2023.
  21. C. M. Gibson, L. E. Chasmer, D. K. Thompson, W. L. Quinton, M. D. Flannigan, and D. Olefeldt, “Wildfire as a major driver of recent permafrost thaw in boreal peatlands,” Nature Communications, vol. 9, no. 1, p. 3041, Aug. 2018.
  22. C. J. Abolt, M. H. Young, A. L. Atchley, and C. J. Wilson, “Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models,” The Cryosphere, vol. 13, no. 1, pp. 237–245, Jan. 2019.
  23. C. Witharana, M. A. E. Bhuiyan, A. K. Liljedahl, M. Kanevskiy, T. Jorgenson, B. M. Jones, R. Daanen, H. E. Epstein, C. G. Griffin, K. Kent, and M. K. Ward Jones, “An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite Imagery,” Remote Sensing, vol. 13, no. 4, p. 558, Jan. 2021.
  24. L. Kondmann, A. Toker, M. Rußwurm, A. C. Unzueta, D. Peressuti, G. Milcinski, P.-P. Mathieu, N. Longépé, T. Davis, G. Marchisio, L. Leal-Taixé, and X. X. Zhu, “DENETHOR: The DynamicEarthNET dataset for Harmonized, inter-Operable, analysis-Ready, daily crop monitoring from space,” Aug. 2021.
  25. M. Volpi and D. Tuia, “Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 2, pp. 881–893, Feb. 2017.
  26. E. Bowler, P. T. Fretwell, G. French, and M. Mackiewicz, “Using Deep Learning to Count Albatrosses from Space: Assessing Results in Light of Ground Truth Uncertainty,” Remote Sensing, vol. 12, no. 12, p. 2026, Jan. 2020.
  27. Y. Hua, D. Marcos, L. Mou, X. X. Zhu, and D. Tuia, “Semantic Segmentation of Remote Sensing Images With Sparse Annotations,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  28. P. Upretee and B. Khanal, “FixMatchSeg: Fixing FixMatch for Semi-Supervised Semantic Segmentation,” Aug. 2022.
  29. D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks,” in Workshop on Challenges in Representation Learning, ICML, vol. 3.   Atlanta, 2013, p. 896.
  30. Q. Li, Y. Shi, and X. X. Zhu, “Semi-Supervised Building Footprint Generation With Feature and Output Consistency Training,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022.
  31. L. Yang, L. Qi, L. Feng, W. Zhang, and Y. Shi, “Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7236–7246.
  32. V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, A. Solin, Y. Bengio, and D. Lopez-Paz, “Interpolation consistency training for semi-supervised learning,” Neural Networks, vol. 145, pp. 90–106, 2022.
  33. K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. Raffel, E. D. Cubuk, A. Kurakin, and C.-L. Li, “FixMatch: Simplifying semi-supervised learning with consistency and confidence,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, 2020.
  34. B. Zhang, Y. Zhang, Y. Li, Y. Wan, H. Guo, Z. Zheng, and K. Yang, “Semi-Supervised Deep learning via Transformation Consistency Regularization for Remote Sensing Image Semantic Segmentation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 1–15, 2022.
  35. F. Zhang, Y. Shi, Q. Xu, Z. Xiong, W. Yao, and XX. Zhu, “On the generalization of the semantic segmentation model for landslide detection,” Shandong Technol. Bus. Univ., Yantai, China, Tech. Rep, 2022.
  36. J. Wang, C. H. Q. Ding, S. Chen, C. He, and B. Luo, “Semi-Supervised Remote Sensing Image Semantic Segmentation via Consistency Regularization and Average Update of Pseudo-Label,” Remote Sensing, vol. 12, no. 21, p. 3603, Jan. 2020.
  37. W.-C. Hung, Y.-H. Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang, “Adversarial learning for semi-supervised semantic segmentation,” arXiv preprint arXiv:1802.07934, 2018.
  38. N. Souly, C. Spampinato, and M. Shah, “Semi supervised semantic segmentation using generative adversarial network,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5688–5696.
  39. Z. He, H. Liu, Y. Wang, and J. Hu, “Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification,” Remote Sensing, vol. 9, no. 10, p. 1042, Oct. 2017.
  40. J. Liu, K. Chen, G. Xu, H. Li, M. Yan, W. Diao, and X. Sun, “Semi-Supervised Change Detection Based on Graphs with Generative Adversarial Networks,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2019, pp. 74–77.
  41. N. A. A. Braham, L. Mou, J. Chanussot, J. Mairal, and X. X. Zhu, “Self Supervised Learning for Few Shot Hyperspectral Image Classification,” in IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2022, pp. 267–270.
  42. K. Heidler, L. Mou, D. Hu, P. Jin, G. Li, C. Gan, J.-R. Wen, and X. X. Zhu, “Self-supervised audiovisual representation learning for remote sensing data,” International Journal of Applied Earth Observation and Geoinformation, vol. 116, p. 103130, Feb. 2023.
  43. O. Mañas, A. Lacoste, X. Giró-i-Nieto, D. Vazquez, and P. Rodríguez, “Seasonal Contrast: Unsupervised Pre-Training From Uncurated Remote Sensing Data,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9414–9423.
  44. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: Composable transformations of Python+NumPy programs,” 2018.
  45. T. Hennigan, T. Cai, T. Norman, and I. Babuschkin, “Haiku: Sonnet for JAX,” 2020.
  46. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. (MICCAI), Oct. 2015, pp. 234–241.
  47. D. Saxena and J. Cao, “Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions,” ACM Computing Surveys, vol. 54, no. 3, pp. 63:1–63:42, May 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube