Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debiased Learning for Remote Sensing Data (2312.15393v1)

Published 24 Dec 2023 in cs.CV

Abstract: Deep learning has had remarkable success at analyzing handheld imagery such as consumer photos due to the availability of large-scale human annotations (e.g., ImageNet). However, remote sensing data lacks such extensive annotation and thus potential for supervised learning. To address this, we propose a highly effective semi-supervised approach tailored specifically to remote sensing data. Our approach encompasses two key contributions. First, we adapt the FixMatch framework to remote sensing data by designing robust strong and weak augmentations suitable for this domain. Second, we develop an effective semi-supervised learning method by removing bias in imbalanced training data resulting from both actual labels and pseudo-labels predicted by the model. Our simple semi-supervised framework was validated by extensive experimentation. Using 30\% of labeled annotations, it delivers a 7.1\% accuracy gain over the supervised learning baseline and a 2.1\% gain over the supervised state-of-the-art CDS method on the remote sensing xView dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
  2. D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric, Y. Bulatov, and B. McCord, “xview: Objects in context in overhead imagery,” arXiv preprint arXiv:1802.07856, 2018.
  3. X. Sun, P. Wang, Z. Yan, F. Xu, R. Wang, W. Diao, J. Chen, J. Li, Y. Feng, T. Xu et al., “Fair1m: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 184, pp. 116–130, 2022.
  4. G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, and L. Zhang, “Dota: A large-scale dataset for object detection in aerial images,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3974–3983.
  5. K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel, E. D. Cubuk, A. Kurakin, and C.-L. Li, “Fixmatch: Simplifying semi-supervised learning with consistency and confidence,” Advances in neural information processing systems, vol. 33, pp. 596–608, 2020.
  6. U. Singhal, S. X. Yu, Z. Steck, S. Kangas, and A. A. Reite, “Multi-spectral image classification with ultra-lean complex-valued models,” arXiv preprint arXiv:2211.11797, 2022.
  7. P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning,” arXiv preprint arXiv:1711.05225, 2017.
  8. J. Kim and C. Park, “End-to-end ego lane estimation based on sequential transfer learning for self-driving cars,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 30–38.
  9. S. Thirumaladevi, K. V. Swamy, and M. Sailaja, “Remote sensing image scene classification by transfer learning to augment the accuracy,” Measurement: Sensors, vol. 25, p. 100645, 2023.
  10. A. Fuller, K. Millard, and J. R. Green, “Transfer learning with pretrained remote sensing transformers,” arXiv preprint arXiv:2209.14969, 2022.
  11. R. Pires de Lima and K. Marfurt, “Convolutional neural network for remote-sensing scene classification: Transfer learning analysis,” Remote Sensing, vol. 12, no. 1, p. 86, 2019.
  12. T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big self-supervised models are strong semi-supervised learners,” Advances in neural information processing systems, vol. 33, pp. 22 243–22 255, 2020.
  13. Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via non-parametric instance discrimination,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3733–3742.
  14. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 9729–9738.
  15. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning.   PMLR, 2020, pp. 1597–1607.
  16. J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al., “Bootstrap your own latent-a new approach to self-supervised learning,” Advances in neural information processing systems, vol. 33, pp. 21 271–21 284, 2020.
  17. D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised learning,” Advances in neural information processing systems, vol. 32, 2019.
  18. D. Berthelot, N. Carlini, E. D. Cubuk, A. Kurakin, K. Sohn, H. Zhang, and C. Raffel, “Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring,” arXiv preprint arXiv:1911.09785, 2019.
  19. D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks,” in Workshop on challenges in representation learning, ICML, vol. 3, no. 2, 2013, p. 896.
  20. J. Li, C. Xiong, and S. C. Hoi, “Comatch: Semi-supervised learning with contrastive graph regularization,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9475–9484.
  21. X. Wang, Z. Wu, L. Lian, and S. X. Yu, “Debiased learning from naturally imbalanced pseudo-labels,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14 647–14 657.
  22. G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona, and S. Belongie, “The inaturalist species classification and detection dataset,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8769–8778.
  23. A. Gupta, P. Dollar, and R. Girshick, “Lvis: A dataset for large vocabulary instance segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 5356–5364.
  24. Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 9268–9277.
  25. S. Park, J. Lim, Y. Jeon, and J. Y. Choi, “Influence-balanced loss for imbalanced visual classification,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 735–744.
  26. K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced datasets with label-distribution-aware margin loss,” Advances in neural information processing systems, vol. 32, 2019.
  27. X. Wang, L. Lian, Z. Miao, Z. Liu, and S. X. Yu, “Long-tailed recognition by routing diverse distribution-aware experts,” arXiv preprint arXiv:2010.01809, 2020.
  28. A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar, “Long-tail learning via logit adjustment,” arXiv preprint arXiv:2007.07314, 2020.
  29. S. Greenland, J. Pearl, and J. M. Robins, “Confounding and collapsibility in causal inference,” Statistical science, vol. 14, no. 1, pp. 29–46, 1999.
  30. J. Pearl, “Causal inference in statistics: An overview,” Statistics surveys, vol. 3, pp. 96–146, 2009.
  31. D. B. Rubin, “Essential concepts of causal inference: a remarkable history and an intriguing future,” Biostatistics & Epidemiology, vol. 3, no. 1, pp. 140–155, 2019.
  32. E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated data augmentation with a reduced search space,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020, pp. 702–703.
  33. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  34. Z. Cai, A. Ravichandran, S. Maji, C. Fowlkes, Z. Tu, and S. Soatto, “Exponential moving average normalization for self-supervised and semi-supervised learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 194–203.

Summary

We haven't generated a summary for this paper yet.