Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Integrated Imitation and Reinforcement Learning Methodology for Robust Agile Aircraft Control with Limited Pilot Demonstration Data

Published 27 Dec 2023 in cs.AI, cs.LG, cs.RO, cs.SY, and eess.SY | (2401.08663v1)

Abstract: In this paper, we present a methodology for constructing data-driven maneuver generation models for agile aircraft that can generalize across a wide range of trim conditions and aircraft model parameters. Maneuver generation models play a crucial role in the testing and evaluation of aircraft prototypes, providing insights into the maneuverability and agility of the aircraft. However, constructing the models typically requires extensive amounts of real pilot data, which can be time-consuming and costly to obtain. Moreover, models built with limited data often struggle to generalize beyond the specific flight conditions covered in the original dataset. To address these challenges, we propose a hybrid architecture that leverages a simulation model, referred to as the source model. This open-source agile aircraft simulator shares similar dynamics with the target aircraft and allows us to generate unlimited data for building a proxy maneuver generation model. We then fine-tune this model to the target aircraft using a limited amount of real pilot data. Our approach combines techniques from imitation learning, transfer learning, and reinforcement learning to achieve this objective. To validate our methodology, we utilize real agile pilot data provided by Turkish Aerospace Industries (TAI). By employing the F-16 as the source model, we demonstrate that it is possible to construct a maneuver generation model that generalizes across various trim conditions and aircraft parameters without requiring any additional real pilot data. Our results showcase the effectiveness of our approach in developing robust and adaptable models for agile aircraft.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.