Papers
Topics
Authors
Recent
Search
2000 character limit reached

Wake-Sleep Consolidated Learning

Published 6 Dec 2023 in cs.NE, cs.AI, cs.CV, and cs.LG | (2401.08623v1)

Abstract: We propose Wake-Sleep Consolidated Learning (WSCL), a learning strategy leveraging Complementary Learning System theory and the wake-sleep phases of the human brain to improve the performance of deep neural networks for visual classification tasks in continual learning settings. Our method learns continually via the synchronization between distinct wake and sleep phases. During the wake phase, the model is exposed to sensory input and adapts its representations, ensuring stability through a dynamic parameter freezing mechanism and storing episodic memories in a short-term temporary memory (similarly to what happens in the hippocampus). During the sleep phase, the training process is split into NREM and REM stages. In the NREM stage, the model's synaptic weights are consolidated using replayed samples from the short-term and long-term memory and the synaptic plasticity mechanism is activated, strengthening important connections and weakening unimportant ones. In the REM stage, the model is exposed to previously-unseen realistic visual sensory experience, and the dreaming process is activated, which enables the model to explore the potential feature space, thus preparing synapses to future knowledge. We evaluate the effectiveness of our approach on three benchmark datasets: CIFAR-10, Tiny-ImageNet and FG-ImageNet. In all cases, our method outperforms the baselines and prior work, yielding a significant performance gain on continual visual classification tasks. Furthermore, we demonstrate the usefulness of all processing stages and the importance of dreaming to enable positive forward transfer.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 5 tweets with 0 likes about this paper.