Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Microphone Subset Selection for the Weighted Prediction Error Algorithm using a Group Sparsity Penalty (2401.08486v1)

Published 16 Jan 2024 in eess.AS

Abstract: Reverberation can severely degrade the quality of speech signals recorded using microphones in an enclosure. In acoustic sensor networks with spatially distributed microphones, a similar dereverberation performance may be achieved using only a subset of all available microphones. Using the popular convex relaxation method, in this paper we propose to perform microphone subset selection for the weighted prediction error (WPE) multi-channel dereverberation algorithm by introducing a group sparsity penalty on the prediction filter coefficients. The resulting problem is shown to be solved efficiently using the accelerated proximal gradient algorithm. Experimental evaluation using measured impulse responses shows that the performance of the proposed method is close to the optimal performance obtained by exhaustive search, both for frequency-dependent as well as frequency-independent microphone subset selection. Furthermore, the performance using only a few microphones for frequency-independent microphone subset selection is only marginally worse than using all available microphones.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com